Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nam
Xem chi tiết
Nam
Xem chi tiết
Đỗ Thanh Tùng
5 tháng 7 2016 lúc 14:31

 a+b+c=0 => a^2+b^2+c^2+2ab+2bc+2ca = 0 => a^2+b^2+c^2=0
=> a^2+b^2+c^2 = ab+bc+ca
=> 2a^2+2b^2+2c^2 = 2ab+2bc+2ca
=> (a-b)^2 + (b-c)^2 + (c-a)^2 = 0
=> a=b=c, mà a+b+c=0 => a=b=c=0

thay vào

M=(0-2016)2016+(0-2016)2016-(0-2016)2016=(-2016)2016=20162016

Chúc bạn hoc tốt ùng hộ nha

cô bé thì sao nào 992003
Xem chi tiết
Nguyen Linh Chi
Xem chi tiết
Hỏi Làm Gì
Xem chi tiết
Lê Thư
Xem chi tiết
Sara
Xem chi tiết
soyeon_Tiểubàng giải
1 tháng 12 2016 lúc 20:47

\(A=\frac{2016a}{ab+2016a+2016}+\frac{b}{bc+b+2016}+\frac{c}{ac+c+1}\)

\(A=\frac{2016a}{ab+2016a+abc}+\frac{b}{bc+b+2016}+\frac{bc}{abc+bc+b}\)

\(A=\frac{2016a}{a\left(b+2016+bc\right)}+\frac{b}{bc+b+2016}+\frac{bc}{2016+bc+b}\)

\(A=\frac{2016}{b+2016+bc}+\frac{b}{bc+b+2016}+\frac{bc}{2016+bc+b}\)

\(A=\frac{2016+b+bc}{2016+b+bc}=1\)

Khánh Hà
1 tháng 12 2016 lúc 20:47

Thay : 2016 = abc

ta có :

\(A=\frac{a^2bc}{ab+a^2bc+abc}+\frac{b}{bc+b+abc}+\frac{c}{ac+c+1}\)

\(A=\frac{a^2bc}{ab\left(1+ac+c\right)}+\frac{b}{b\left(c+1+ac\right)}+\frac{c}{ac+c+1}\)

\(A=\frac{ac}{ac+c+1}+\frac{1}{ac+c+1}+\frac{c}{ac+c+1}\)

\(A=\frac{ac+c+1}{ac+c+1}\)

\(A=1\)

vậy \(A=\frac{2016.a}{ab+2016.a+2016}+\frac{b}{bc+b+2016}+\frac{c}{ac+c+1}=1\)

Chúc bạn học tốt !

Hàn Băng
Xem chi tiết
Nyatmax
23 tháng 11 2019 lúc 14:30

Ta co:

\(\text{ }P=\Sigma_{cyc}\frac{ab}{2016-c}=\Sigma_{cyc}\frac{ab}{a+b}\le\Sigma_{cyc}\frac{\frac{\left(a+b\right)^2}{4}}{a+b}=\Sigma_{cyc}\frac{a+b}{4}=1008\)

Dau '=' xay ra khi \(a=b=c=672\)

Khách vãng lai đã xóa
chi lê
Xem chi tiết