\(\frac{1}{\sqrt{7-\sqrt{24}}+1}+\frac{1}{\sqrt{7+\sqrt{24}}+1}\)
Rút gọn
\(\frac{1}{\sqrt{7-\sqrt{24}+1}}+\frac{1}{\sqrt{7+\sqrt{24}+1}}\)
Rút gọn
=\(\frac{1}{\sqrt{7-2\sqrt{6}_{ }}+1}+\frac{1}{\sqrt{7+2\sqrt{6}}+1}\)
=\(\frac{1}{\sqrt{\left(\sqrt{6}-1\right)^2+1}}+\frac{1}{\sqrt{\left(\sqrt{6+1}\right)^2}+1}\)
=\(\frac{1}{\sqrt{6}}+\frac{1}{\sqrt{6}+2}\)
=\(\frac{\sqrt{6}+2+\sqrt{6}}{\sqrt{6}\left(\sqrt{6}+2\right)}\)
=\(\frac{2\sqrt{6}+2}{6+2\sqrt{6}}\)
Rút gọn biểu thức
a)\(\frac{1}{\sqrt{7-\sqrt{24}}+1}-\frac{1}{\sqrt{7-\sqrt{24}}-1}\)
bạn tách mau ra rồi tính như bình thường thôi mà . bài này dễ chứ ko khó .
rút gọn:\(\frac{1}{\sqrt{1}-\sqrt{2}}+\frac{1}{\sqrt{2}-\sqrt{3}}+...+\frac{1}{\sqrt{24}-\sqrt{25}}\)
Nhân liên hiệp ta được :
\(\frac{\sqrt{1}+\sqrt{2}}{\left(\sqrt{1}-\sqrt{2}\right)\left(\sqrt{1}+\sqrt{2}\right)}+\frac{\sqrt{2}+\sqrt{3}}{\left(\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+\sqrt{3}\right)}+...+\frac{\sqrt{24}+\sqrt{25}}{\left(\sqrt{24}-\sqrt{25}\right)\left(\sqrt{24}+\sqrt{25}\right)}\)
\(=\frac{\sqrt{1}+\sqrt{2}}{1-2}+\frac{\sqrt{2}+\sqrt{3}}{2-3}+...+\frac{\sqrt{24}+\sqrt{25}}{24-25}\)
\(=-\sqrt{1}-\sqrt{2}-\sqrt{2}-\sqrt{3}-....-\sqrt{24}-\sqrt{25}\)
\(=-\left[\frac{\left(\sqrt{25}+\sqrt{1}\right).25}{2}+\frac{\left(\sqrt{24}+\sqrt{2}\right).23}{2}\right]\)
\(=...\)
THỰC HIỆN PHÉP TÌNH VÀ RÚT GỌN CÁC BIỂU THỨC:
A=\(\left(\sqrt{\frac{2}{3}}+\sqrt{\frac{50}{3}}-\sqrt{24}\right).\)\(\sqrt{6}\)
B= \(\left(\frac{\sqrt{14}-\sqrt{7}}{\sqrt{2}-1}+\frac{\sqrt{15}-\sqrt{5}}{\sqrt{3}-1}\right)\)\(:\frac{1}{\sqrt{7}-\sqrt{5}}\)
Rút gọn : \(A=\frac{1}{\sqrt{1}-\sqrt{2}}-\frac{1}{\sqrt{2}-\sqrt{3}}-...-\frac{1}{\sqrt{24}-\sqrt{25}}\)
Rút gọn:
\(\frac{1}{\sqrt{1}\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{24}\sqrt{25}}\)
\(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{24}+\sqrt{25}}\)
\(=\frac{\left(\sqrt{2}-\sqrt{1}\right)\left(\sqrt{2}+\sqrt{1}\right)}{\sqrt{1}+\sqrt{2}}+\frac{\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)}{\sqrt{2}+\sqrt{3}}\)
\(+...+\frac{\left(\sqrt{25}-\sqrt{24}\right)\left(\sqrt{25}+\sqrt{24}\right)}{\sqrt{24}+\sqrt{25}}\)
\(=\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{25}-\sqrt{24}\)
\(=\sqrt{25}-1=5-1=4\)
\(\frac{1}{\sqrt{1}\sqrt{2}}+\frac{1}{\sqrt{2}\sqrt{3}}+...+\frac{1}{\sqrt{24}\sqrt{25}}\)
\(=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{24}}-\frac{1}{\sqrt{25}}\)
\(=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{25}}\)
Tính:
\(a)\frac{1}{\sqrt{7-\sqrt{24}}+1}+\frac{1}{\sqrt{7+\sqrt{24}}-1}\\ b)\frac{1}{1+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{9}}+...+\frac{1}{\sqrt{2014}+\sqrt{2015}}\)
\(a=\frac{1}{\sqrt{7-2\sqrt{6}}+1}+\frac{1}{\sqrt{7+2\sqrt{6}}-1}=\frac{1}{\sqrt{\left(\sqrt{6}-1\right)^2}+1}+\frac{1}{\sqrt{\left(\sqrt{6}+1\right)^2}-1}\)
\(=\frac{1}{\sqrt{6}}+\frac{1}{\sqrt{6}}=\frac{2}{\sqrt{6}}=\frac{\sqrt{6}}{3}\)
Coi lại đề câu b, quy luật ở số hạng cuối cùng sai (nhìn 2 số hạng đầu 2 số dưới căn hơn kém nhau 4 đơn vị, số cuối lại chỉ hơn kém nhau 1 đơn vị)
Rút gọn các biểu thức sau:
1) \(\frac{1}{\sqrt{7-\sqrt{24}+1}}-\frac{1}{\sqrt{7+\sqrt{24}}}\)
2) \(\frac{\sqrt{3}}{\sqrt{\sqrt{3}+1}-1}-\frac{\sqrt{3}}{\sqrt{\sqrt{3}-1}+1}\)
3) \(\sqrt{\frac{5+2\sqrt{6}}{5-\sqrt{6}}}+\sqrt{\frac{5-2\sqrt{6}}{5+\sqrt{6}}}\)
4) \(\sqrt{\frac{3+\sqrt{5}}{3-\sqrt{5}}}+\sqrt{\frac{3-\sqrt{5}}{3+\sqrt{5}}}\)
Rút gọn\(\frac{\sqrt{7}}{\sqrt{1-\sqrt{7}}-1}-\frac{\sqrt{7}}{\sqrt{1+\sqrt{7}}+1}\)