tìm các số hữu tỉ x,y,z biêt xy=1/3;yz=2/3 và xz=-3/10
Tìm các số hữu tỉ x,y,z
a;xy=2/3. yz=0,6 và xz=0,625
b;x(x-y+z)=-11 ; y*(y-z-x)=25 va(z+x-y)
nhân xy.yz.zx=...=>(xyz)^2=...
theo hướng đó mà làm
b)thiếu đề
Tìm các số hữu tỉ x,y,z
a;xy=2/3; yz=0,6 và xz=0,625
b;x(x-y+z)=-11 ; y*(y-z-x)=25 va(z+x-y)=35
a)Ta có: xy=2/3 và yz=0,6
nên xy*yz=2/3*0,6
xz*y2=0,4
mà xz=0,625
nên 0,625*y2=0,4
y2=0,4/0,625
y2=0,64 nên y=0,8 hoặc y=-0,8
*)nếu y=0,8
thì x=2/3:0,8=5/6
thì z=0,6:0,8=0,75
*)Nếu y=-0,8
thì x=2/3:(-0,8)=-5/6
thì z=0,6:(-0,8)=-0,75
1 tìm các số hữu tỉ x,y thỏa mãn 3x=2y và x+y=-15
2 tìm các số hữu tỉ x,y biết rằng
a) x+y-z=20 và \(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{5}\)
b)\(\dfrac{x}{11}=\dfrac{y}{12};\dfrac{y}{3}=\dfrac{z}{7}\) và 2x-y+z=152
3) chia số 552 thành ba phần tỉ lệ nghịch 3;4;5 tính giá trị từng phần?
chia số 315 thành 3 phần tỉ lệ nghịch với 3:4:6. tính giá trị mỗi phần?
4 cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\) chứng minh rằng
a)\(\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\)
b)\(\dfrac{5a+2c}{5a+2d}=\dfrac{a-4c}{b-4d}\)
c\(\dfrac{ab}{cd}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
Các bạn giúp mình với nhé mình dang cần gấp.mình xin cảm ơn
Bài 1:
Ta có: \(3x=2y\)
nên \(\dfrac{x}{2}=\dfrac{y}{3}\)
mà x+y=-15
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{x+y}{2+3}=\dfrac{-15}{5}=-3\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{2}=-3\\\dfrac{y}{3}=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-6\\y=-9\end{matrix}\right.\)
Vậy: (x,y)=(-6;-9)
Bài 2:
a) Ta có: \(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{5}\)
mà x+y-z=20
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x+y-z}{4+3-5}=\dfrac{20}{2}=10\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{4}=10\\\dfrac{y}{3}=10\\\dfrac{z}{5}=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=40\\y=30\\z=50\end{matrix}\right.\)
Vậy: (x,y,z)=(40;30;50)
Bài 2:
b) Ta có: \(\dfrac{y}{3}=\dfrac{z}{7}\)
nên \(\dfrac{y}{12}=\dfrac{z}{28}\)
mà \(\dfrac{x}{11}=\dfrac{y}{12}\)
nên \(\dfrac{x}{11}=\dfrac{y}{12}=\dfrac{z}{28}\)
hay \(\dfrac{2x}{22}=\dfrac{y}{12}=\dfrac{z}{28}\)
mà 2x-y+z=152
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{2x}{22}=\dfrac{y}{12}=\dfrac{z}{28}=\dfrac{2x-y+z}{22-12+28}=\dfrac{152}{38}=4\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{11}=4\\\dfrac{y}{12}=4\\\dfrac{z}{28}=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=44\\y=48\\z=112\end{matrix}\right.\)
Vậy: (x,y,z)=(44;48;112)
Tìm các số hữu tỉ x,y,z:
5x=2y;2x=3z và xy=90
x/2=y/3;y/4=z/5 và x^2-y^2=-20
Có :
\(5x=2y\Rightarrow\frac{x}{2}=\frac{y}{5}\Rightarrow\frac{x}{6}=\frac{y}{15}\)
\(2x=3z\Rightarrow\frac{x}{3}=\frac{z}{2}\Rightarrow\frac{x}{6}=\frac{z}{4}\)
\(\Rightarrow\frac{x}{6}=\frac{y}{15}=\frac{z}{4}\)
\(\Rightarrow x,y,z\)cùng dấu
Lại có : \(\Rightarrow\frac{x^2}{36}=\frac{y^2}{225}=\frac{z^2}{16}=\left(\frac{x}{6}\right)\left(\frac{y}{15}\right)=\frac{xy}{6.15}=\frac{90}{90}=1\)
\(\frac{x^2}{36}=1\Rightarrow x^2=36\Rightarrow\orbr{\begin{cases}x=6\\x=-6\end{cases}}\)
\(\frac{y^2}{225}=1\Rightarrow y^2=225\Rightarrow\orbr{\begin{cases}y=15\\y=-15\end{cases}}\)
\(\frac{z^2}{16}=1\Rightarrow z^2=16\Rightarrow\orbr{\begin{cases}z=4\\z=-4\end{cases}}\)
Mà \(x,y,z\)cùng dấu
\(\Rightarrow\orbr{\begin{cases}x=6;y=15;z=4\\x=-6;y=-15;z=-4\end{cases}}\)
Vậy ...
Giải:
Ta có: 5x = 2y => x/2 = y/5 => x/6 = y/15
2x = 3z => x/3 = z/2 => x/6 = z/4
=> x/6 = y/15 = z/4
Đặt x/6 = y/15 = z/4 = k
=> x = 6k, y = 15k, z = 4k
Mà xy = 90
=> 6.k.15.k = 90
=> 90.k2 = 90
=> k2 = 1
=> k = 1 hoặc k = -1
+) k = 1 => x = 6, y = 15, z = 4
+) k = -1 => x = -6, y = -15, z = -4
Vậy x = 6, y = 15, z = 4 hoặc x = -6, y = -15, z = -4
câu trả lời rất dễ : do la mot so tu 0 den 100000000000000000000000000000000000000000000
Tìm các số hữu tỉ x,y,z hỏa mãn các điều kiện
\(xy=\frac{1}{3};yz=-\frac{2}{5};xz=-\frac{3}{10}\)
Mk tick 2 cái luôn
Theo đề bài, ta có: \(\left(xyz\right)^2=\frac{1}{3}\cdot\left(-\frac{2}{5}\right)\cdot\left(-\frac{3}{10}\right)=\frac{1}{25}\)
\(\rightarrow xyz=\sqrt{\frac{1}{25}}=+_-\frac{1}{5}\)
Th1: xyz = 1/5
=> z= xyz : xy = 1/5 : 1/3 = 3/5
=> x= xyz : yz = 1/5 : (-2/5) = -1/2
=> y = xyz : xz = 1/5 : (-3/10) = -2/3
Th2: xyz = -1/5
=> z= xyz : xy = -1/5 : 1/3 = -3/5
=> x= xyz : yz = -1/5 : (-2/5) = 1/2
=> y = xyz : xz = -1/5 : (-3/10) = 2/3
Vậy....
chuyên đề ; Số cp
cho x,y,z thuộc Q t/m: x^2+y^2+z^2=2*(xy+yz+zx)
chứng minh:xy là bình phương của 1 số hữu tỉ (biết xy+yz+zx là bình phương của 1 số hữu tỉ) giúp mình với mọi người
Cho x, y, z là các số hữu tỉ thỏa mãn \(x^2+y^2+z^2=2\left(xy+yz+zx\right)\) . Chứng minh rằng
a) \(xy+yz+zx\) là bình phương của một số hữu tỉ
b) \(xy\) là bình phương của một số hữu tỉ
a) \(4\left(xy+yz+zx\right)=x^2+y^2+z^2+2\left(xy+yz+zx\right)=\left(x+y+z\right)^2\) là bình phương 1 số hữu tỉ => 4(xy+yz+zx) cũng là bp số hữu tỉ mà 4=22 => xy+yz+zx là bp 1 số hữu tỉ
b) \(x^2+y^2+z^2=2\left(xy+yz+zx\right)\)\(\Leftrightarrow\)\(\left(x+y\right)^2+z^2=4xy+2yz+2zx\)
\(\Leftrightarrow\)\(\left(x+y\right)^2-2z\left(x+y\right)+z^2=4xy\)\(\Leftrightarrow\)\(\left(x+y-z\right)^2=4xy\)
Do (x+y-z)2 là bình phương 1 số hữu tỉ => 4xy là bp số hữu tỉ => xy là bp số hữu tỉ
cho x;y;z là các số hữu tỉ thỏa mãn x^2+y^2+z^2=2 {xy+yz+zx}
chứng minh rằng:
a} xy+yz+zx là bình phương của một số hưu tỉ
b} xy là bình phương của một số hữu tỉ
giải nhanh giúp mình vs ạ mình đang cần gấp
Bài 1: tìm các số nguyên x và y biết rằng:
\(\frac{x}{4}-\frac{1}{y}=\frac{1}{2}\)
bài 2: tìm hai số hữu tỉ x và y sao cho
x-y=x.y=x:y (y khác 0 )
bài 3 : tìm các số hữu tỉ x;y;z biết rằng
x(x+y+z)=-5; y(x+y+z)=9; z(x+y+z)=5
bài 4: người ta viết năm số hữu tỉ trên 1 vòng tròn, trong đó tích hai số cạnh nhau luôn bằng \(\frac{1}{4}\). tìm các số đó
Bài 2 :
Ta có : x - y = xy => x = xy + y = y ( x + 1 )
=> x : y = x + 1 ( vì y khác 0 )
Ta có : x : y = x - y => x + 1 = x - y => y = -1
Thay y = -1 vào x - y = xy , ta được x - (-1) = x (-1) => 2x = -1 => x = -1/2
Vậy x = -1/2 ; y = -1
Ta có : x - y = xy => x = xy + y = y ( x + 1 )
=> x : y = x + 1 ( vì y khác 0 )
Ta có : x : y = x - y => x + 1 = x - y => y = -1
Thay y = -1 vào x - y = xy , ta được x - (-1) = x (-1) => 2x = -1 => x = -1/2
Vậy x = -1/2 ; y = -1