tìm tất cả số nguyên tố p sao cho:
a)p+2;p+10 là số nt
b)p+10;p+14 là số nt
c)p+6;p+8;p+12;p+16 là số nt
d)p+2;p+6;p+8;p+12;p+14 là số nt
Tìm số nguyên tố p sao cho:
a) 5p+3 là số nguyên tố
b) p+2; p+10 là các số nguyên tố
a) Với p=2
⇒ 5p+3=13 (TM)
Với p>2
⇒ p=2k+1
⇒ 5p+3=5(2k+1)+3
=10k+8 ⋮2
⇒ là hợp số (L)
Vậy p=2
tìm tất cả cá số nguyên tố p sao cho p^2 + 2^p là số nguyên tố
nếu p chẵn \(\Rightarrow\) p = 2 \(\Rightarrow\) p2 + 2p = 22 + 22 = 8 \(\notin\) P
nếu p lẻ :
+ p \(⋮\) 3 \(\Rightarrow\) p = 3 \(\Rightarrow\) p2 + 2p = 17 là stn ( thỏa mãn )
+ p \(⋮̸\)3 , đặt p = 3k \(\pm\) 1
p2 = ( 3k \(\pm\) 1 )2 = 9k2 \(\pm\) 6k + 1 = 3 ( 3k2 \(\pm\) 2k ) + 1 : 3 dư 1
còn 2p \(\equiv\) ( - 1 )p \(\equiv\) - 1 ( mod 3 ) do p lẻ
do đó p2 + 2p \(\equiv\) 1 + ( - 1 ) \(\equiv\) 0 ( mod 3 )
mà p2 + 2p > 3 nên không thể la stn ( không thỏa mãn )
vậy p = 3 là kết quả duy nhất thỏa mãn
Tìm tất cả số nguyên tố p sao cho p+2,p+4 cũng là số nguyên tố
+) Với p = 2 thì p + 2 = 2 + 2 = 4 là hợp số (Loại)
+) Với p = 3 thì p + 2 = 3 + 2 = 5, p + 4 = 3 + 4 = 7 là các số nguyên tố (Thỏa mãn).
+) Với p > 3: p là số nguyên tố nên suy ra: p = 3k + 1 hoặc p = 3k + 2 (k ∈ N*).
+) p = 3k + 1: Ta có: p + 2 = 3k + 1 + 2 = 3k + 3 = 3.(k + 1) ⋮ 3 là hợp số (Loại) +) p = 3k + 2:
Ta có: p + 4 = 3k + 2 + 4 = 3k + 6 = 3.(k + 2) ⋮ 3 là hợp số (Loại).
Với p > 3 không có giá trị nào thỏa mãn yêu cầu của bài toán.
Vậy p = 3
Tìm tất cả các số nguyên tố P sao cho P bằng tổng 2 số nguyên tố bằng hiệu hai số nguyên tố
Tìm tất cả các số nguyên tố p sao cho p^2+14 là số nguyên tố
Tìm tất cả các số nguyên tố P sao cho P^2 + 14 là số nguyên tố
do p là số nguyên tố =>p>=2
xét p=2 => p+10 =12 (không là số nguyên tố)
xét p=3 => p+10 =13 (là số nguyên tố ) ,p+14 =17 (là số nguyên tố)
=> p=3 thỏa mãn đề bài
xét p là số nguyên tố >3 => p không chia hết cho 3 . nếu p chia 3 dư 1
=> p+14 chia hết cho 3 mà p+14 >3 => p+14 không là số nguyên tố => vô lý
nếu p chia 3 dư 2=> p+10 chia hết cho 3 mà p+10 >3 => p+10 không là số nguyên tố
vậy với p là số nguyên tố >3 thì p không thỏa mãn đề bài
p=3 là số nguyên tố duy nhất thỏa mãn đề bài
tìm tất cả các số nguyên tố p sao cho p^2+2^p cũng là số nguyên tố
Tìm tất cả các số nguyên tố p sao cho p^2+2^p cũng là số nguyên tố
tìm tất cả các số nguyên tố p sao cho p^2+14 là số nguyên tố
Giả sử p là số nguyên tố lớn hơn 3. Khi đó p2 chia 3 dư 1
=>p2=3k+1(k \(\in\) N)
=>p2+14=3k+1+14=3k+15=3.(k+5) chia hết cho 3, ko phải số nguyên tố, loại
Vậy p=2 hoặc p=3
Với p=2 thì p2+14=22+14=18, ko là số nguyên tố
Với p=3 thì p2+14=32+14=23, là số nguyên tố, chọn
Vậy p=3
Tìm tất cả các số nguyên tố p sao cho p bằng tổng của 2 số nguyên tố . Và p bằng hiệu của 2 số nguyên tố.