Tính:
a) \(\left(\frac{1}{5}\right)^5\) . 55
b) (0,125)3 . 512
c) (0,25)4 . 1024
Tính:
a)\({\left( { - 2} \right)^2}.{\left( { - 2} \right)^3}\); b)\({\left( { - 0,25} \right)^7}:{\left( { - 0,25} \right)^5}\); c)\({\left( {\frac{3}{4}} \right)^4}.{\left( {\frac{3}{4}} \right)^3}.\)
a)\({\left( { - 2} \right)^2}.{\left( { - 2} \right)^3} = {\left( { - 2} \right)^{2 + 3}} = {\left( { - 2} \right)^5}\);
b)\({\left( { - 0,25} \right)^7}:{\left( { - 0,25} \right)^5} = {\left( { - 0,25} \right)^{7 - 5}} = {\left( { - 0,25} \right)^2} = {\left( {0,25} \right)^2}\);
c)\({\left( {\frac{3}{4}} \right)^4}.{\left( {\frac{3}{4}} \right)^3} = {\left( {\frac{3}{4}} \right)^{4 + 3}} = {\left( {\frac{3}{4}} \right)^7}.\)
\(A=\frac{0,375-0,3+\frac{3}{11}+\frac{3}{12}}{-0,625+0,5-\frac{5}{11}-\frac{5}{12}}+\frac{1,5+1-0,75}{2,5+\frac{5}{3}-1,25}\)
\(A=\frac{3\left(0,125-0,1+\frac{1}{11}+\frac{1}{12}\right)}{-5\left(0,125-0,1+\frac{1}{11}+\frac{1}{12}\right)}+\frac{3\left(0,5+\frac{1}{3}-0,25\right)}{5\left(0,5+\frac{1}{3}-0,25\right)}=-\frac{3}{5}+\frac{3}{5}=0\)
sao bạn tự đăng tự giải thế? hay là bạn giải cho ai à?
1 Tính:
a) \(\left(\frac{1}{5}\right)\)mũ 5 . 5mũ5 b) (0,125)mũ3 . 512 c) (0,25)mũ 4 . 1024
a, \(\frac{1^5}{5}\).55= (\(\frac{1}{5}\).5)5=15=1
a) \(\left(\frac{1}{5}\right)^5.5^5=\left(\frac{1}{5}.5\right)^5=1^5=1\)
b) \(\left(0,125\right)^3.512=\left(0,125\right)^3.8^3=\left(0,125.8\right)^3=1^3=1\)
c) \(\left(0,25\right)^4.1024=\left(\frac{1}{4}\right)^4.1024=\frac{1^4}{4^4}.1024=\frac{1}{16}.1024=\frac{1024}{16}=58\)
a) \(\left(\frac{1}{5}\right)^5.5^5=\left(\frac{1}{5}.5\right)^5=1^5=1\)
b) \(\left(0,125\right)^3.512=\left(0,125\right)^3.8^3=\left(0,125.8\right)^3=1^3=1\)
c) \(\left(0,25\right)^4.1024=\text{[}\left(0,25\right)^2\text{]}^2.32^2=\left(\frac{1}{6}\right)^2.32^2=\left(\frac{1}{6}.32\right)^2=\left(\frac{32}{6}\right)^2=2^2=4\)
a) (\(\frac{1}{5}\))5 . 55
b) (0,125) 3 . 512
c) (0,25) 4. 1024
A) (1/5)^5 . 5^5 = 1/5^5 . 5^5 = 5^5 / 5^5 = 1.
B)(0,125)^3 . 512 = (1/8)^3 . 512 = 1/8^3 . 512 = 1/512 . 512 = 1.
C) (0,25)^4 . 1024 = (1/4)^4 . 1024 = 1/4^4 . 1024 = 1/256 . 1024 = 4.
a) \(\left(\frac{1}{5}\right)^5.5^5\) b) (0,125)3 . 512 c) (0,25)4 . 1024
a) \(\left(\frac{1}{5}\right)^5.5^5=\frac{1^5}{5^5}.5^5=1^5=1\)
b) \(\left(0,25\right)^4.1024=\left(\frac{1}{4}\right)\text{ }^4.2^{10}=\frac{1^4}{4^4}.2^{10}=\frac{1}{\left(2^2\right)^4}.2^{10}=\frac{1}{2^8}.2^{10}=2^2=4\)
c) \(\left(0,125\right)^3.512=\left(\frac{1}{8}\right)^3.2^9=\frac{1^3}{8^3}.2^9=\frac{1}{\left(2^3\right)^3}.2^9=\frac{1}{2^9}.2^9=1\)
Tính:
a) \(\left( {\frac{3}{4}:1\frac{1}{2}} \right) - \left( {\frac{5}{6}:\frac{1}{3}} \right)\)
b) \(\left[ {\left( {\frac{{ - 1}}{5}} \right):\frac{1}{{10}}} \right] - \frac{5}{7}.\left( {\frac{2}{3} - \frac{1}{5}} \right)\)
c) \(\left( { - 0,4} \right) + 2\frac{2}{5}.{\left[ {\left( {\frac{{ - 2}}{3}} \right) + \frac{1}{2}} \right]^2}\)
d)\(\left\{ {\left[ {{{\left( {\frac{1}{{25}} - 0,6} \right)}^2}:\frac{{49}}{{125}}} \right].\frac{5}{6}} \right\} - \left[ {\left( {\frac{{ - 1}}{3}} \right) + \frac{1}{2}} \right]\)
a)
\(\begin{array}{l}\left( {\frac{3}{4}:1\frac{1}{2}} \right) - \left( {\frac{5}{6}:\frac{1}{3}} \right)\\ = \left( {\frac{3}{4}:\frac{3}{2}} \right) - \left( {\frac{5}{6}.3} \right)\\ = \left( {\frac{3}{4}.\frac{2}{3}} \right) - \frac{5}{2}\\ = \frac{1}{2} - \frac{5}{2}\\ = \frac{-4}{2}\\= - 2.\end{array}\)
b)
\(\begin{array}{l}\left[ {\left( {\frac{{ - 1}}{5}} \right):\frac{1}{{10}}} \right] - \frac{5}{7}.\left( {\frac{2}{3} - \frac{1}{5}} \right)\\ = \left( {\frac{{ - 1}}{5}} \right).10 - \frac{5}{7}.\left( {\frac{{10}}{{15}} - \frac{3}{{15}}} \right)\\ = - 2 - \frac{5}{7}.\frac{7}{{15}}\\ = - 2 - \frac{1}{3}\\ = \frac{{ - 6}}{3} - \frac{1}{3}\\ = \frac{{ - 7}}{3}\end{array}\)
c)
\(\begin{array}{l}\left( { - 0,4} \right) + 2\frac{2}{5}.{\left[ {\left( {\frac{{ - 2}}{3}} \right) + \frac{1}{2}} \right]^2}\\ = \left( { - \frac{2}{5}} \right) + \frac{{12}}{5}.{\left[ {\left( {\frac{{ - 4}}{6}} \right) + \frac{3}{6}} \right]^2}\\ = \left( { - \frac{2}{5}} \right) + \frac{{12}}{5}.{\left( {\frac{{ - 1}}{6}} \right)^2}\\ = \left( { - \frac{2}{5}} \right) + \frac{{12}}{5}.\frac{1}{{36}}\\ = \left( { - \frac{2}{5}} \right) + \frac{1}{{15}}\\ = \left( { - \frac{6}{{15}}} \right) + \frac{1}{{15}}\\ = \frac{{ - 5}}{{15}}\\ = \frac{{ - 1}}{3}\end{array}\)
d)
\(\begin{array}{l}\left\{ {\left[ {{{\left( {\frac{1}{{25}} - 0,6} \right)}^2}:\frac{{49}}{{125}}} \right].\frac{5}{6}} \right\} - \left[ {\left( {\frac{{ - 1}}{3}} \right) + \frac{1}{2}} \right]\\ = \left\{ {\left[ {{{\left( {\frac{1}{{25}} - \frac{3}{5}} \right)}^2}.\frac{{125}}{{49}}} \right].\frac{5}{6}} \right\} - \left[ {\left( {\frac{{ - 2}}{6}} \right) + \frac{3}{6}} \right]\\ = \left\{ {\left[ {{{\left( {\frac{{ 1}}{{25}}-\frac{15}{25}} \right)}^2}.\frac{{125}}{{49}}} \right].\frac{5}{6}} \right\} - \frac{1}{6}\\ = \left\{ {\left[ {{{\left( {\frac{{ - 14}}{{25}}} \right)}^2}.\frac{{125}}{{49}}} \right].\frac{5}{6}} \right\} - \frac{1}{6}\\ = \left\{ {\frac{{196}}{{{{25}^2}}}.\frac{{25.5}}{{49}}.\frac{5}{6}} \right\} - \frac{1}{6}\\ = \left( {\frac{{4.49.25.5.5}}{{{{25}^2}.49.6}}} \right) - \frac{1}{6}\\ = \frac{4}{6} - \frac{1}{6}\\ = \frac{3}{6}\\ = \frac{1}{2}\end{array}\)
Bỏ dấu ngoặc rồi tính:
a)\(\left( {\frac{{ - 3}}{7}} \right) + \left( {\frac{5}{6} - \frac{4}{7}} \right);\)
b)\(\frac{3}{5} - \left( {\frac{2}{3} + \frac{1}{5}} \right);\)
c)\(\left[ {\left( {\frac{{ - 1}}{3} + 1} \right) - \left( {\frac{2}{3} - \frac{1}{5}} \right)} \right];\)
d)\(1\frac{1}{3} + \left( {\frac{2}{3} - \frac{3}{4}} \right) - \left( {0,8 + 1\frac{1}{5}} \right)\).
a)
\(\begin{array}{l}\left( {\frac{{ - 3}}{7}} \right) + \left( {\frac{5}{6} - \frac{4}{7}} \right)\\ = \left( {\frac{{ - 3}}{7}} \right) + \frac{5}{6} - \frac{4}{7}\\ = \left[ {\left( {\frac{{ - 3}}{7}} \right) - \frac{4}{7}} \right] + \frac{5}{6}\\ =\frac{-7}{7}+\frac{5}{6}\\= - 1 + \frac{5}{6}\\ = \frac{{ - 1}}{6}\end{array}\)
b)
\(\begin{array}{l}\frac{3}{5} - \left( {\frac{2}{3} + \frac{1}{5}} \right)\\ = \frac{3}{5} - \frac{2}{3} - \frac{1}{5}\\ = (\frac{3}{5} - \frac{1}{5}) - \frac{2}{3}\\ = \frac{2}{5} - \frac{2}{3}\\ = \frac{6}{{15}} - \frac{{10}}{{15}}\\ = \frac{{ - 4}}{{15}}\end{array}\)
c)
\(\begin{array}{l}\left[ {\left( {\frac{{ - 1}}{3}} \right) + 1} \right] - \left( {\frac{2}{3} - \frac{1}{5}} \right)\\ = \left( {\frac{{ - 1}}{3}} \right) + 1 - \frac{2}{3} + \frac{1}{5}\\ = \left( {\frac{{ - 1}}{3} - \frac{2}{3}} \right) + 1 + \frac{1}{5}\\ = \frac{-3}{3}+1+\frac{1}{5}\\= - 1 + 1 + \frac{1}{5}\\ = \frac{1}{5}\end{array}\)
d)
\(\begin{array}{l}1\frac{1}{3} + \left( {\frac{2}{3} - \frac{3}{4}} \right) - \left( {0,8 + 1\frac{1}{5}} \right)\\ = 1 + \frac{1}{3} + \frac{2}{3} - \frac{3}{4} - \left( {\frac{4}{5} + 1 + \frac{1}{5}} \right)\\=1+\frac{3}{3}-\frac{3}{4}-(\frac{5}{5}+1)\\ = 1 + 1 - \frac{3}{4} - (1+1)\\ = - \frac{3}{4}\end{array}\).
a/ \(\left(\dfrac{1}{7}\right)\)7 * 77
b/ (0,125)3* 512
c/ (0,25)4*1024
\(\left(\dfrac{1}{7}\right)^7\cdot7^7=\left(\dfrac{1}{7}\cdot7\right)^7=1^7=1\\ \left(0,125\right)^3\cdot512=\left(0,125\right)^3\cdot8^3=\left(0,125\cdot8\right)^3=1^3=1\\ \left(0,25\right)^4\cdot1024=\left(0,25\right)^4\cdot256\cdot4=\left(0,25\right)^4\cdot4^4\cdot4=\left(0,25\cdot4\right)^4\cdot4=1^4\cdot4=4\)
a) \(\left(\dfrac{1}{7}\right)^7.7^7=\left(\dfrac{1}{7}.7\right)^7=1^7=1\)
b) \(\left(0.125\right)^3.512=\left(0.125\right)^3.8^3=\left(0.125\cdot8\right)^3=1^3=1\)
c) \(\left(0.25\right)^4.1024=\left(0.25\right)^4.4^5=\left(0.25\right)^4.4^4.4=\left(0.25.4\right)^4.4=1^4.4=1.4=4\)
Tính:
(1/5)^5 . 5^3(0,125)^3 . 512(0,25)^4 . 1024120^3/40^3390^3/130^4