Tính
a, 2/3 + 2/15 + 2/35 + 2/63
A 2/3 + 2/15 + 2/35 + 2/63
B (1/15 + 1/35 + 1/63) x X =1
A=12/15 + 28/315
A=8/9
B. 1/9 x X = 1 X= 1: 1/9X= 9Tính
a,8+2\(\sqrt{15}\)
b,12+2\(\sqrt{35}\)
c,8+\(\sqrt{60}\)
\(a,8+2\sqrt{15}=\left(\sqrt{3}+\sqrt{5}\right)^2\\ b,12+2\sqrt{35}=\left(\sqrt{7}+\sqrt{5}\right)^2\\ c,8+\sqrt{60}=8+2\sqrt{15}=\left(\sqrt{3}+\sqrt{5}\right)^2\)
Tính
a,\(\sqrt{4+\sqrt{15}}\)
b,\(\left(3-\sqrt{2}\right)\sqrt{11+6\sqrt{2}}\)
c,\(\left(\sqrt{5}+\sqrt{7}\right)\sqrt{12-2\sqrt{35}}\)
a: Ta có: \(\sqrt{4+\sqrt{15}}\)
\(=\dfrac{\sqrt{8+2\sqrt{15}}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{5}+\sqrt{3}}{\sqrt{2}}=\dfrac{\sqrt{10}+\sqrt{6}}{2}\)
b: Ta có: \(\left(3-\sqrt{2}\right)\cdot\sqrt{11+6\sqrt{2}}\)
\(=\left(3-\sqrt{2}\right)\left(3+\sqrt{2}\right)\)
=9-2
=7
c: Ta có: \(\left(\sqrt{7}+\sqrt{5}\right)\cdot\sqrt{12-2\sqrt{35}}\)
\(=\left(\sqrt{7}+\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)\)
=2
Câu 2. Tính
a. (-35) : (-7)
b. 42 : (-21)
c. 55 : (-5)
d. 46 : (-23)
e. – 30 : (-2)
f. 23 . (-4)
g. 15. (-3) .0
h. -32. 14
a: \(\dfrac{-35}{-7}=\dfrac{35}{7}=5\)
b: \(\dfrac{42}{-21}=-\dfrac{42}{21}=-2\)
c: \(\dfrac{55}{-5}=-\dfrac{55}{5}=-11\)
d: \(\dfrac{46}{-23}=-\dfrac{46}{23}=-2\)
e: \(-30:\left(-2\right)=\dfrac{30}{2}=15\)
f: \(23\cdot\left(-4\right)=-23\cdot4=-92\)
g: \(15\cdot\left(-3\right)\cdot0=15\cdot0=0\)
h: \(-32\cdot14=-32\cdot10-32\cdot4=-320-128=-448\)
2/3 + 2/15 + 2/35 + 2/63
\(\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+\frac{2}{63}=2\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}\right)=2\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}\right)\)
\(=2\left[\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}\right)\right]\)
\(=2.\left[\frac{1}{2}.\left(1-\frac{1}{9}\right)\right]=2.\left(\frac{1}{2}.\frac{8}{9}\right)=2.\frac{4}{9}=\frac{8}{9}\)
2/3 + 2/15 + 2/35 + 2/63
2/3 + 2/15 + 2/35 + 2/63
= 2/1×3 + 2/3×5 + 2/5×7 + 2/7×9
= 1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + 1/7 - 1/9
= 1 - 1/9
= 8/9
\(\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+\frac{2}{63}\)
= \(\frac{4}{5}+\frac{4}{45}\)
= \(\frac{8}{9}\)
2/3+2/15+2/35+2/63+2/99=
2/3 + 2/15 + 2/35 + 2/63 + 2/99
= 2/1×3 + 2/3×5 + 2/5×7 + 2/7×9 + 2/9×11
= 1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + 1/7 - 1/9 + 1/9 - 1/11
= 1 - 1/11
= 10/11
2/3+2/15+2/35+2/63+2/99
=4/5+2/15+2/63+2/99
=14/15+2/63+2/99
=304/315+2/99
=1138/1155
2/3+2/15+2/35+2/63+.....+2/143
\(\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+...+\frac{2}{143}\)
\(=\frac{2}{1\times3}+\frac{2}{3\times5}+\frac{2}{5\times7}+\frac{2}{7\times9}+...+\frac{2}{11\times13}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{11}-\frac{1}{13}\)
\(=1-\frac{1}{13}=\frac{12}{13}\)
Đặt \(A=\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+...+\frac{2}{143}\)
\(\Rightarrow A=\frac{2}{1\times3}+\frac{2}{3\times5}+\frac{2}{5\times7}+...+\frac{2}{11.13}\)
\(\Rightarrow A=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{11}-\frac{1}{13}\)
\(\Rightarrow A=1-\frac{1}{13}=\frac{13}{13}-\frac{1}{13}=\frac{2}{13}\)
2/3+2/15+2/35+2/63+2/99
\(=\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+\frac{2}{99}\)
\(=2.\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\right)\)
\(=2.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{9}-\frac{1}{11}\right)\)
\(=2.\left(\frac{1}{1}-\frac{1}{11}\right)\)
\(=\frac{20}{11}\)
2/3+2/15+2/35+2/63+2/99
\(\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+\frac{2}{99}\)
= \(\frac{2}{1\times3}+\frac{2}{3\times5}+\frac{2}{5\times7}+\frac{2}{7\times9}+\frac{2}{9\times11}\)
= \(\frac{3-1}{1\times3}+\frac{5-3}{3\times5}+\frac{7-5}{5\times7}+\frac{9-7}{7\times9}+\frac{11-9}{9\times11}\)
= \(\frac{3}{1\times3}-\frac{1}{1\times3}+\frac{5}{3\times5}-\frac{3}{3\times5}+...+\frac{11}{9\times11}-\frac{9}{9\times11}\)
= \(1-\frac{1}{11}\)=\(\frac{10}{11}\)