\(\left(n+2\right)^2-\left(n-2\right)^2\) chia hết cho 8
\(\left(n+7\right)^2-\left(n-5\right)^2\) chia hết cho 24
\(\left(n+3\right)^2-\left(n-4\right)^2\) chia hết cho 7
\(c,31,8^2-2.31,8.21,8+21,8^2\)
Bài 12 : chứng minh rằng với mọi số nguyên n thì
a, \(\left(n+2\right)^2-\left(n-2\right)^2\) chia hết cho 8
b, \(\left(n+7\right)^2-\left(n-5\right)^2\) chia hết cho 24
\(c,=\left(31,8-21,8\right)^2=10^2=100\\ 12,\\ a,\left(n+2\right)^2-\left(n-2\right)^2\\ =\left(n+2-n+2\right)\left(n+2+n-2\right)\\ =4\cdot2n=8n⋮8\\ b,\left(n+7\right)^2-\left(n-5\right)^2\\ =\left(n+7-n+5\right)\left(n+7+n-5\right)\\ =12\left(2n+2\right)=24\left(n+1\right)⋮24\)
Bài 1 : Chứng minh rằng với mọi số nguyên n
a) \(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\) chia hết cho 5
b)\(n\left(n+5\right)-\left(n-3\right)\left(n+2\right)\)chia hết cho 6
c)\(\left(n-1\right)\left(n+1\right)-\left(n-7\right)\left(n-5\right)\)chia hết cho 12
Bài 2:
Tìm x biết : \(\left(4x+3_{^{ }}\right)^3+\left(5-7x\right)^3+\left(3x-8\right)^3=0\)
Bài 2:Tìm x biết
\\(\\left(4x+3\\right)^3+\\left(5-7x\\right)^3+\\left(3x-8\\right)^3=0\\)
\\(\\Leftrightarrow\\left[\\left(4x\\right)^3+3.\\left(4x\\right)^2.3+3.4x.3^2+3^3\\right]+\\left[5^3-3.5^2.7x+3.5.\\left(7x\\right)^2-\\left(7x\\right)^3\\right]+\\left[\\left(3x\\right)^3-3.\\left(3x\\right)^2.8+3.3x.8^2-8^3\\right]=0\\)
\\(\\Leftrightarrow64x^3+144x^2+108x+27+125-525x+735x^2-343x^3+27x^3-216x^2+576x-512=0\\)
\\(\\Leftrightarrow-252x^3+663x^2+159x-360=0\\)
\\(\\Leftrightarrow3\\left(-84x^3+221x^2+53x-120\\right)=0\\)
Bài 2: Đặt \(4x+3=a;5-7x=b;3x-8=c\Rightarrow a+b+c=0\)
Kết hợp với đề bài ta có \(\left\{{}\begin{matrix}a^3+b^3+c^3=0\\a+b+c=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a^3+b^3+c^3-3abc+3abc=0\\a+b+c=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)+3abc=0\left(1\right)\\a+b+c=0\left(2\right)\end{matrix}\right.\)
Thay (2) vào (1) suy ra \(3abc=0\Leftrightarrow a=0\text{hoặc }b=0\text{hoặc }c=0\)
+) a = 0 suy ra \(x=-\frac{3}{4}\)
+) b = 0 suy ra \(x=\frac{5}{7}\)
+) c = 0 suy ra \(x=\frac{8}{3}\)
Vậy...
CMR với mọi số nguyên n thì:
a/ \(n^2\left(n+1\right)+2n\left(n+1\right)\) chia hết cho 6
b/ \(\left(2n-1\right)^3-\left(2n-1\right)\) chia hết cho 8
c/ \(\left(n+7\right)^2-\left(n-5\right)^2\) chia hết cho 24
\(n^3+n^2+2n^2+2n\)
\(n^2\left(n+1\right)+2n\left(n+1\right)\)
\(n\left(n+1\right)\left(n+2\right)\) là tích 3 số tự nhiên liên tiếp nên chia hết cho 2 và 3. Mà 2 và 3 nguyên tố cùng nhau nên tích chia hết cho 6.
c) \(n^2+14n+49-n^2+10n-25\)
\(=24n+24=24\left(N+1\right)\) CHIA HẾT CHO 24
Bài 20: Chứng minh với mọi số nguyên n thì
d) \(\left(n+7\right)^2-\left(n-5\right)^2\)chia hết cho 24
e) \(\left(7n+5\right)^2-25\)chia hết cho 7 với \(n\inℤ\)
f) \(\left(n+6\right)^2-\left(n-6\right)^2\)chia hết cho 24 với \(n\inℤ\)
g) \(n^3-n\)chia hết cho 6 với mọi \(n\inℤ\)
d) ( n + 7 )2 - ( n - 5 )2
= n2 + 14n + 49 - n2 + 10n - 25
= 24n + 24
= 24 ( n + 1 ) chia hết cho 24 ( đpcm )
e)
( 7n + 5 )2 - 25
= ( 7n + 5 )2 - 52
= ( 7n + 5 - 5 ) ( 7n + 5 + 5 )
= 7n ( 7n + 10 ) chia hết cho 7 ( đpcm )
f) ( n + 6 )2 - ( n - 6 )2
= ( n + 6 + n - 6 ) ( n + 6 - n + 6 )
= 2n . 12
= 24n chia hết cho 24 ( đpcm )
CMR: n\(\in\)Z
a)\(\left(n+3\right)^2-\left(n-1\right)^2\)chia hết cho 8
b)\(\left(n+6\right)^2-\left(n-6\right)^2\)chia hết cho 24
c)\(\left(n^2+3n+1\right)^2-1\)chia hết cho 24 \(\forall\)n\(\in\)Z
a) \(\left(n+3\right)^2-\left(n-1\right)^2\)
\(=\left(n+3+n-1\right)\left(n+3-n+1\right)\)
\(=\left(2n+2\right)4\)
\(=2\left(n+1\right).4\)
\(=8\left(n+1\right)⋮8\)
=> đpcm
a/\(\left(n+3\right)^2-\left(n-1\right)^2.\)
\(=\left(n^2+6n+9\right)-\left(n^2-2n+1\right)\)
\(=n^2+6n+9-n^2+2n-1\)
\(=8n+8\)
\(=8\left(n+1\right)\)
có \(8\left(n+1\right)⋮8\)
\(\Rightarrow\left(n+3\right)^2-\left(n-1\right)^2⋮8\)
b/ \(\left(n+6\right)^2-\left(n-6\right)^2\)
\(=\left(n^2+12n+36\right)-\left(n^2-12n+36\right)\)
\(=n^2+12n+36-n^2+12n-36\)
\(=24n\)
có \(24n⋮24\)
\(\Rightarrow\left(n+6\right)^2-\left(n-6\right)^2⋮24\)
CMR: với mọi số tự nhiên n thì:
a)\(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\) chia hết cho 5
b)\(\left(6n+1\right)\left(n+5\right)-\left(3n+5\right)\left(2n-1\right)\)chia hết cho 2
a, Ta có: \(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\)
\(=n^3+3n^2-n+2n^2+6n-2-n^3+2\)
\(=5n^2+5n=5\left(n^2+n\right)⋮5\)
\(\Rightarrowđpcm\)
b, \(\left(6n+1\right)\left(n+5\right)-\left(3n+5\right)\left(2n-1\right)\)
\(=6n^2+31n+5-6n^2-7n+5\)
\(=24n+10=2\left(12n+5\right)⋮2\)
\(\Rightarrowđpcm\)
a)
= n3 + 2n2 + 3n2 + 6n - n - 2 + 2
= 5n2 + 5n
= 5(n2 + n ) chia hết cho 5
b)
= 2(12n +5) chia hết cho 2
1,Phân tích đa thức thành nhân tử:
a)\(9\left(x+5\right)^2-\left(x-7\right)^2\)
b)\(25\left(x-y\right)^2-16\left(x+y\right)^2\)
2,CMR
a)\(\left(n+6\right)^2-\left(n-6\right)^2\)chia hết cho 24
b)\(n^3+3n^2-n-3\)chi hết cho 48
1, a, = (3x+15-x+7 )( 3x+15+x-7)
= ( 2x +22)( 4x+8)
=8( x+11)( x+2)
b, = ( 5x-5y-4x - 4y)(5x-5y+4x+4y)
=(x-9y)(x-y)
2.a,ta có : (n+6)2- (n-6)2 = (n+6-n+6)( n+6+n-6) = 12.2n=24n chia hết cho 24 ( vì 24 chia hết cho 24) (ĐPCM)
b,
Ta có: n^3+3.n^2-n-3=n^2.(n+3) -(n+3)=(n+3).(n-1).(n+1).
-Do n là số lẻ nên đặt n=2k+1.(k thuộc N).
=> n^3+3.n^2-n-3= (2k+4).2k.(2k+2)= 8.k.(k+1).(k+2).
-Do k(k+1) là tích 2 số tự nhiên liên tiếp nên k(k+1) chia hết cho 2 và k(k+1)(k+2) là tích 3 số tự nhiên liên tiếp nên k(k+1)(k+2) chia hết cho 3.
=> 8k(k+1)(k+2) chia hết cho 16 và chia hết cho 3. Mà (16,3)=1.
=> 8k(k+1)(k+2) chia hết cho 16.3.
=> n^3+3.n^2-n-3 chia hết cho 48 với mọi n là số tự nhiên lẻ (đpcm).
Với mọi \(n\in Z\) thì \(\left(n+7\right)^2-\left(n-5\right)^2\) chia hết cho số nào ?
(n+7)2-(n+5)2
=[(n+7)+(n-5)].[(n+7)-(n-5)]
=(n+7+n+5).(n+7-n+5)
=(2n+2)12
=2(n+1)12
=24(n+1)
Vậy, đa thức trên chia hết cho 24 với mọi n
Cho \(A=\left[\frac{n}{2}\right]+\left[n+\frac{1}{2}\right];B=\left[\frac{n}{3}\right]+\left[n+\frac{1}{3}\right]+\left[n+\frac{2}{3}\right]\)với giá trị nào của n thuộc Z thì :
a) A chia hết cho 2 ; b) B chia hết cho 3