Chứng minh rằng: trong ba số tự nhiên liên tiếp luôn có một số chia hết cho 3
1. Chứng minh rằng
a) (45+99+180) chia hết cho 2
b) (125+350+235) chia hết cho 5
c) (5124-504) chia hết cho 4
d) (9226-1435) chia hết cho 7
2.Chứng minh rằng
a) Trong hai số tự nhiên liên tiếp luôn có 1 số chia hết cho 2
b) Trong ba số tự nhiên liên tiếp luôn có 1 số chia hết cho 3
c) Trong bốn số tự nhiên liên tiếp luôn có 1 số chia hết cho 4
a. Ta có:
45 + 99 + 180 = 324
Vì: Số tận cùng của nó là số 4
=> 324 chia hết cho 2
Bài 1
chỉ cần tính ra kết quả là đc
Bài 2
Giả sử một số tự nhiên bất kì = n
=> 2 số tự nhiên liên tiếp là n và n+1
- Với n = 2k+1=>n+1 = 2k+2 chia hết 2
- Với n = 2k => n chia hết 2
Vậy trong 2 số tự nhiên liên tiếp luôn có 1 số chia hết 2
Chứng minh rằng :
a. Trong 3 số tự nhiên liên tiếp luôn có một số chia hết cho 3.
b. Trong 4 số tự nhiên liên tiếp luôn có một số chia hết cho 4.
c. Nêu kết luận tổng quát từ câu a và câu b
d. Chứng minh rằng : tích của hai số chẵn liên tiếp chia hết cho 8
a) chứng minh rằng trong ba số tự nhiên liên tiếp chắc chắc chắn có một số chia hết cho 2 và một số chia hết cho 36
b) chứng minh rằng tích của ba số tự nhiên liên tiếp chia hết cho
chứng minh rằng ba số tự nhiên liên tiếp luôn có 1 số chia hết cho 3
Gọi 3 số tự nhiên liên tiếp lần lượt là n ; n+1 ; n+2
Nếu n chia hết cho 3 thì bài toán luôn đúng
Nếu n : 3 dư 1 thì n = 3k + 1 ( k ∈ N)
⇒ n +2 = 3k + 1 +2 = 3k + 3 chia hết cho 3
Nếu n : 3 dư 2 thì n = 3k + 2
⇒ n + 1 = 3k + 2 + 1 = 3k + 3 chia hết cho 3
⇒ Trong 3 số tự nhiên liên tiếp có một số chia hết cho 3.
Trả lời: chứng minh rằng ba số tự nhiên liên tiếp luôn có 1 số chia hết cho 3
Gọi 3 số liên tiếp lần lượt là a,b,c (a<b<c)
Có 3 trường hợp sau:
TH1: a mod 3=0 -> a là số chia hết cho 3 trong 3 số
TH 2: a mod 3 =1
-> b mod 3= 2
và c mod 3 =0 -> c chia hết cho 3
TH3: a mod 3=2
-> b mod 3=0
-> b chia hết cho 3
Kết luận: 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 3.
a) Tổng của ba số tự nhiên liên tiếp có chia hết cho 3 không ?
b) Tổng của bốn số tự nhiên liên tiếp có chia hết cho 4 không ?
c) Chứng tỏ rằng trong ba số tự nhiên liên tiếp có một số chia hết cho 3
d) Chứng tỏ rằng trong bốn số tự nhiên liên tiếp có một số chia hết cho 4
A, CÓ
B,KHÔNG
C,GOI BA SO TU NHIEN LIEN TIEP LA A,A+1, A+2,
(a+a+a)+ (1+2)
3a+3 chia hết cho 3
vi 3chia hết cho 3
vậy tổng 3 số tự nhiên liên tiếp chia hết cho 3
gọi 4 số tự nhiên liên tiếp là a,á+1,a+2,a+3
(a+a+a+a)+(1+2+3)
4a+6 không chia hết cho 3 vì 4 không chia hết cho 3
vậy tổng 4 số tự nhiên liên tiếp không chia hết cho 3
nếu câu a và câu b có vì sao thì sẽ làm thế nào
Đáp án của mik là:..............
Nhớ k cho mik nha!
Hãy chứng minh rằng trong 3 số tự nhiên liên tiếp luôn có một số chia hết cho 3
Gọi 3 số tự nhiên liên tiếp là a, a +1, a + 2 ( a thuộc N )
Ta xét 3 trường hợp :
TH1: a chia cho 3 dư 0
Suy ra : a chia hết cho 3
TH2: a chia cho 3 dư 1
Ta có : a = 3q + 1
a + 2 = 3q +1 + 2
a + 2 = 3q + 3
a + 2 = 3q + 3 .1
a + 2 = 3.(q + 1 )
Suy ra : a +2 chia hết cho 3
TH3 : a chia cho 3 dư 2
Ta có : a = 3q + 2
a + 1 = 3q +2 + 1
a + 1 = 3q + 3
a + 1 = 3q + 3 .1
a + 1 = 3.(q + 1)
Suy ra : a + 1 chia hết cho 3
Vậy trong 3 số tự nhiên liên tiếp có duy nhất 1 số chia hết cho 3 .
gọi 3 số đó là a,a+1,a+2(.\(a\in N\))
Khi chia a.(a+1).(a+2) cho 3 sẽ có 3 trường hợp xảy ra:3k, 3k+1, 3k+2 ( \(k\in N\))
+ Nếu a = 3k => a.(a+1).(a+2) chia hết cho 3
+ Nếu a = 3k +1 => a+2=3k+3 chia hết cho 3 => a.(a+1).(a+2) chia hết cho 3
+ Nếu a = 3k +2 => a+1=3k+3 chia hết cho 3 =>a.(a+1).(a+2) chia hết cho 3
\(\Rightarrow\)Từ trên ta thấy với 3k, 3k+1, 3k+2 ( \(k\in N\)) thì sẽ có một số chia hết cho 3
Gọi 3 số tự nhiên liên tiếp là a, a +1, a + 2 ( a thuộc N )
Ta xét 3 trường hợp :
TH1: a chia cho 3 dư 0
Suy ra : a chia hết cho 3
TH2: a chia cho 3 dư 1
Ta có : a = 3q + 1
a + 2 = 3q +1 + 2
a + 2 = 3q + 3
a + 2 = 3q + 3 .1
a + 2 = 3.(q + 1 )
Suy ra : a +2 chia hết cho 3
TH3 : a chia cho 3 dư 2
Ta có : a = 3q + 2
a + 1 = 3q +2 + 1
a + 1 = 3q + 3
a + 1 = 3q + 3 .1
a + 1 = 3.(q + 1)
Suy ra : a + 1 chia hết cho 3
Vậy Đpcm
Bài toán vui: - Hãy chứng tỏ rằng tổng của ba số tự nhiên liên tiếp luôn chia hết cho 3 - Hãy chứng tỏ rằng tích của ba số tự nhiên liên tiếp luôn chia hết cho 6
gọi 3 số tự nhiên Liên tiếp là: a,a+1,a+2. => a+(a+1)(a+2)=a+a+1+a+2=3a+3. 3a chia hết cho 3,3 cũng chia hết cho 3 => tổng này luôn luôn chia hết cho 3
Bài toán vui:
- Hãy chứng tỏ rằng tổng của ba số tự nhiên liên tiếp luôn chia hết cho 3
- Hãy chứng tỏ rằng tích của ba số tự nhiên liên tiếp luôn chia hết cho 6
gọi 3 số tự nhiên Liên tiếp là: a,a+1,a+2.
=> a+(a+1)(a+2)=a+a+1+a+2=3a+3.
3a chia hết cho 3,3 cũng chia hết cho 3
=> tổng này luôn luôn chia hết cho 3.
chứng tỏ rằng :
a) tổng của ba số tự nhiên liên tiếp là một số chia hết cho 3
b) tổng của bốn số tự nhiên liên tiếp là một số không chia hết cho 4
c) tích của hai số tự nhiên liên tiếp thì chia hết cho 2
d) tích của ba số tự nhiên liên tiếp luôn chia hết cho 3
cứu mình
a, Gọi 3 số tự nhiên liên tiếp là n; n+1 và n+2
Tổng chúng: n+(n+1)+(n+2)= 3n+3\(⋮\) 3 \(\forall n\in N\) (đpcm)
b, Gọi 4 số tự nhiên liên tiếp là n; n+1; n+2; n+3
Tổng chúng: \(n+\left(n+1\right)+\left(n+2\right)+\left(n+3\right)=4n+6⋮̸4\forall n\in N\left(Vì:4n⋮4;6⋮̸4\right)\left(đpcm\right)\)
c, Hai số tự nhiên liên tiếp là k và k+1
Tích chúng: k(k+1) . Nếu k chẵn thì k+1 lẻ => Tích chẵn, chia hết cho 2
Nếu k lẻ thì k+1 chẵn => Tích chẵn, chia hết cho 2
(ĐPCM)
d, Ba số tự nhiên liên tiếp là m;m+1 và m+2
Tích chúng: m(m+1)(m+2)
+) TH1: Nếu m chia hết cho 3 => Tích 3 số chia hết cho 3
+) TH2: Nếu m chia 3 dư 1 => m+2 chia hết cho 3 => Tích 3 số chia hết cho 3
+) TH3: Nếu m chia 3 dư 2 => m+1 chia hết cho 3 => Tích 3 số chia hết cho 3
=> Kết luận: Tích 3 số tự nhiên liên tiếp chia hết cho 3 (đpcm)
a: Gọi ba số liên tiếp là a;a+1;a+2
a+a+1+a+2=3a+3=3(a+1) chia hết cho 3
b: Gọi 4 số liên tiếp là a;a+1;a+2;a+3
a+a+1+a+2+a+3
=4a+6
=4a+4+2
=4(a+1)+2 ko chia hết cho 4
c: Hai số liên tiếp thì luôn có 1 số chẵn, 1 số lẻ
=>Hai số liên tiếp khi nhân với nhau sẽ chia hết cho 2
d: Ba số liên tiếp thì chắc chắn sẽ có 1 số chia hết cho 3
=>Ba số liên tiếp khi nhân với nhau sẽ chia hết cho 3