tìm tất cả các số tự nhiên x,y,z thỏa mãn 2010^x+2011^y=2012^z
tìm tất cả các số tự nhiên x,y,z thỏa mãn 2010^x+2011^y=2012^z
tìm tất cả các số tự nhiên x,y,z thỏa mãn 2010^x+2011^y=2012^z
Tìm x,y,z thỏa mãn
\(\frac{\sqrt{x-2010}-1}{x-2010}+\frac{\sqrt{y-2011}-1}{y-2011}+\frac{\sqrt{z-2012}-1}{z-2012}=\frac{3}{4}\)
Áp dụng BĐT Cô - si ngược dấu :
\(\sqrt{x-2010}=\frac{1}{2}\sqrt{4\left(x-2010\right)}\le\frac{4+\left(x-2010\right)}{4}\)
\(\Rightarrow\sqrt{x-2010}-1\le\frac{4+\left(x-2010\right)}{4}-1=\frac{x-2010}{4}\)
\(\Rightarrow\frac{\sqrt{x-2010}-1}{x-2010}\le\frac{1}{4}\)
Hoàn toàn tương tự với những phân thức còn lại
\(\Rightarrow\frac{\sqrt{x-2010}-1}{x-2010}+\frac{\sqrt{y-2011}-1}{y-2011}\le\frac{1}{4}+\frac{1}{4}+\frac{1}{4}=\frac{3}{4}\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x-2010=4\\x-2011=4\\z-2012=4\end{cases}\Leftrightarrow\hept{\begin{cases}x=2014\\y=2015\\z=2016\end{cases}}}\)
Tìm tất cả các số tự nhiên x, y, z thỏa mãn:
\(\sqrt{x+4\sqrt{3}}=\sqrt{y}+\sqrt{z}\)
tìm các số tự nhiên x,y,z để thỏa mãn : 2014x=2013y+2012z
Tìm tất cả bộ 3 số tự nhiên (x;y;z) thỏa mãn: \(4x^2=y^2+2022^z+18\)
TH1: \(z=0\Rightarrow4x^2-y^2=19\Leftrightarrow\left(2x-y\right)\left(2x+y\right)=19\)
\(\Rightarrow\left(x;y\right)=\left(5;9\right)\)
TH2: \(z=1\Rightarrow4x^2-y^2=2040\Rightarrow\left(2x-y\right)\left(2x+y\right)=2040\)
(ko có nghiệm nguyên)
TH3: \(z\ge2\Rightarrow2022^z⋮4\)
Do \(4x^2;2022^2;18\) đều chẵn \(\Rightarrow y^2\) chẵn \(\Rightarrow y\) chẵn \(\Rightarrow y=2k\)
\(\Rightarrow4x^2=4k^2+2022^z+18\)
\(\Rightarrow4x^2-4k^2-2022^z=18\)
Vế trái chia hết cho 4, vế phải ko chia hết cho 4 nên pt vô nghiệm
Vậy pt có bộ nghiệm tự nhiên duy nhất: \(\left(x;y;z\right)=\left(5;9;0\right)\)
Các số thực x, y, z thỏa mãn:
\(\hept{\begin{cases}\sqrt{x+2011}+\sqrt{y+2012}+\sqrt{z+2013}=\sqrt{y+2011}+\sqrt{z+2012}+\sqrt{x+2013}\\\sqrt{y+2011}+\sqrt{z+2012}+\sqrt{x+2013}=\sqrt{z+2011}+\sqrt{x+2012}+\sqrt{y+2013}\end{cases}}\)
CMR: \(x=y=z\)
Đặt \(\hept{\begin{cases}a=x+2011\\b=y+2011\\c=z+2011\end{cases}}\) Ta có Hệ:
\(\hept{\begin{cases}\sqrt{a}+\sqrt{b+1}+\sqrt{c+2}\left(A\right)=\sqrt{b}+\sqrt{c+1}+\sqrt{a+2}\left(B\right)\\\sqrt{b}+\sqrt{c+1}+\sqrt{a+2}\left(B\right)=\sqrt{c}+\sqrt{a+1}+\sqrt{b+2}\left(C\right)\end{cases}}\)
Vai trò \(x,y,z\) bình đẳng
Giả sử \(c=Max\left(a;b;c\right)\) vì \(A=C\) ta có:
\(\sqrt{a}+\sqrt{b+1}+\sqrt{c+2}=\sqrt{c}+\sqrt{a+1}+\sqrt{b+2}\)
\(\Leftrightarrow\left(\sqrt{a+1}-\sqrt{a}\right)+\left(\sqrt{b+2}-\sqrt{b+1}\right)\)
\(=\sqrt{c+2}-\sqrt{c}=\left(\sqrt{c+2}-\sqrt{c+1}\right)+\left(\sqrt{c+1}-\sqrt{c}\right)\)
\(\Leftrightarrow\frac{1}{\sqrt{a+1}+\sqrt{a}}+\frac{1}{\sqrt{b+2}+\sqrt{b+1}}\)
\(=\frac{1}{\sqrt{c+2}+\sqrt{c+1}}+\frac{1}{\sqrt{c+1}+\sqrt{c}}\left(1\right)\)
Mặt khác \(\hept{\begin{cases}c\ge a\Rightarrow\frac{1}{\sqrt{a+1}+\sqrt{a}}\le\frac{1}{\sqrt{c+1}+\sqrt{c}}\\c\ge b\Rightarrow\frac{1}{\sqrt{b+2}+\sqrt{b+1}}\le\frac{1}{\sqrt{c+2}+\sqrt{c+1}}\end{cases}}\)
Suy ra \(\left(1\right)\) xảy ra khi \(a=b=c\Leftrightarrow x=y=z\) (Đpcm)
cho 3 số x,y,z thỏa mãn \(x^2+2y+1=y^2+2z+1=z^2+2x+1=0\)
tính giá trị của biểu thức\(A=x^{2010}-2011\cdot y^{2011}-z^{2012}\)