Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nhok dễ thương
Xem chi tiết
Phan Nghĩa
29 tháng 7 2020 lúc 21:04

\(A=\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\left(\sqrt{4}+\sqrt{6}+\sqrt{8}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=1+\sqrt{2}\)

Khách vãng lai đã xóa
chi mai Nguyen
Xem chi tiết
Nguyễn Việt Hoàng
17 tháng 8 2020 lúc 12:42

+) \(3\sqrt{20}-2\sqrt{45}+4\sqrt{5}\)

\(=3\sqrt{4.5}-2\sqrt{9.5}+4\sqrt{5}\)

\(=6\sqrt{5}-6\sqrt{5}+4\sqrt{5}\)

\(=4\sqrt{5}\)

+) \(\left(\sqrt{28}-2\sqrt{14}+\sqrt{7}\right)\sqrt{7}+7\sqrt{8}\)

\(=\left(2\sqrt{7}-\sqrt{28}+\sqrt{7}\right)\sqrt{7}+7\sqrt{8}\)

\(=\left(2\sqrt{7}-2\sqrt{7}+\sqrt{7}\right)\sqrt{7}+7\sqrt{8}\)

\(=7+7\sqrt{8}\)

Khách vãng lai đã xóa
Ngự thủy sư
Xem chi tiết
Phạm Mạnh Kiên
Xem chi tiết
An Thy
12 tháng 7 2021 lúc 15:29

1) \(\left(\sqrt{19}-3\right)\left(\sqrt{19}+3\right)=\left(\sqrt{19}\right)^2-3^2=19-9=10\)

2) \(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}=\sqrt{\dfrac{8+2\sqrt{7}}{2}}-\sqrt{\dfrac{8-2\sqrt{7}}{2}}\)

\(=\sqrt{\dfrac{\left(\sqrt{7}\right)^2+2.\sqrt{7}.1+1^2}{2}}-\sqrt{\dfrac{\left(\sqrt{7}\right)^2-2.\sqrt{7}.1+1^2}{2}}\)

\(=\sqrt{\dfrac{\left(\sqrt{7}+1\right)^2}{2}}-\sqrt{\dfrac{\left(\sqrt{7}-1\right)^2}{2}}=\dfrac{\left|\sqrt{7}+1\right|}{\sqrt{2}}-\dfrac{\left|\sqrt{7}-1\right|}{\sqrt{2}}\)

\(=\dfrac{\sqrt{7}+1}{\sqrt{2}}-\dfrac{\sqrt{7}-1}{\sqrt{2}}=\dfrac{2}{\sqrt{2}}=\sqrt{2}\)

3) \(\sqrt{8+\sqrt{60}}+\sqrt{45}-\sqrt{12}=\sqrt{8+\sqrt{4.15}}+\sqrt{9.5}-\sqrt{4.3}\)

\(=\sqrt{8+2\sqrt{15}}+3\sqrt{5}-2\sqrt{3}\)

\(=\sqrt{\left(\sqrt{5}\right)^2+2.\sqrt{5}.\sqrt{3}+\left(\sqrt{3}\right)^2}+3\sqrt{5}-2\sqrt{3}\)

\(=\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}+3\sqrt{5}-2\sqrt{3}=\left|\sqrt{5}+\sqrt{3}\right|+3\sqrt{5}-2\sqrt{3}\)

\(\sqrt{5}+\sqrt{3}+3\sqrt{5}-2\sqrt{3}=4\sqrt{5}-\sqrt{3}\)

4) \(\sqrt{9-4\sqrt{5}}-\sqrt{9+4\sqrt{5}}\)

\(=\sqrt{\left(\sqrt{5}\right)^2-2.2.\sqrt{5}+2^2}-\sqrt{\left(\sqrt{5}\right)^2+2.2.\sqrt{5}+2^2}\)

\(=\sqrt{\left(\sqrt{5}-2\right)^2}-\sqrt{\left(\sqrt{5}+2\right)^2}=\left|\sqrt{5}-2\right|-\left|\sqrt{5}+2\right|\)

\(=\sqrt{5}-2-\sqrt{5}-2=-4\)

Nguyễn Lê Phước Thịnh
13 tháng 7 2021 lúc 0:01

1) \(\left(\sqrt{19}-3\right)\left(\sqrt{19}+3\right)=19-9=10\)

4) \(\sqrt{9-4\sqrt{5}}-\sqrt{9+4\sqrt{5}}=\sqrt{5}-2-\sqrt{5}-2=-4\)

nguyễn thị ngọc trâm
Xem chi tiết
alibaba nguyễn
17 tháng 8 2016 lúc 23:20
Cmt rồi nha
Tuấn
17 tháng 8 2016 lúc 22:38

bài này ai kamf chua 

nguyễn thị ngọc trâm
17 tháng 8 2016 lúc 22:39

rồi bấy bề

giờ còn mỗi bài cực trị thôi 

đợi mình up thêm nha

Đặng Triết
Xem chi tiết
Nguyễn Ngọc Bảo
Xem chi tiết
Đinh Đức Hùng
14 tháng 8 2017 lúc 16:18

a) \(\sqrt{39-12\sqrt{3}}+\sqrt{21-12\sqrt{3}}\)

\(=\sqrt{36-12\sqrt{3}+3}+\sqrt{9-12\sqrt{3}+12}\)

\(=\sqrt{\left(6-\sqrt{3}\right)^2}+\sqrt{\left(3-\sqrt{12}\right)^2}\)

\(=6-\sqrt{3}+\sqrt{12}-3=3+\sqrt{3}\)

b) \(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\)

\(=\frac{\sqrt{6-2\sqrt{5}}+\sqrt{6+2\sqrt{5}}}{\sqrt{2}}\)

\(=\frac{\sqrt{5-2\sqrt{5}+1}+\sqrt{5+2\sqrt{5}+1}}{\sqrt{2}}\)

\(=\frac{\sqrt{\left(\sqrt{5}-1\right)^2}+\sqrt{\left(\sqrt{5}+1\right)^2}}{\sqrt{2}}\)

\(=\frac{\sqrt{5}-1+\sqrt{5}+1}{\sqrt{2}}=\frac{2\sqrt{5}}{\sqrt{2}}=\sqrt{10}\)

Phan Hân
Xem chi tiết
HT.Phong (9A5)
20 tháng 9 2023 lúc 17:31

\(\sqrt{4-x^2}=\sqrt{x+2}\) (ĐK: \(-2\le x\le2\))

\(\Leftrightarrow4-x^2=x+2\)

\(\Leftrightarrow x^2+x-2=0\)

\(\Leftrightarrow x^2+2x-x-2=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(tm\right)\\x=-2\left(tm\right)\end{matrix}\right.\)

_______

\(\sqrt{9x^2-4}=2\sqrt{3x-2}\) (ĐK: \(x\ge\dfrac{2}{3}\)

\(\Leftrightarrow9x^2-4=4\left(3x-2\right)\)

\(\Leftrightarrow9x^2-4=12x-8\)

\(\Leftrightarrow9x^2-12x+4=0\)

\(\Leftrightarrow\left(3x-2\right)^2=0\)

\(\Leftrightarrow3x=2\)

\(\Leftrightarrow x=\dfrac{2}{3}\left(tm\right)\)

Dương An Hạ
Xem chi tiết