Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bảo Nam
Xem chi tiết
vũ thị thanh
Xem chi tiết
Bảo Nam
Xem chi tiết
Cường Đào Tấn
Xem chi tiết
Lightning Farron
19 tháng 8 2016 lúc 14:08

Bài 1:

Giả sử có các số nguyên thỏa mãn các đẳng thức đã cho

Xét x3+xyz=x(x2+yz)=579 -->x lẻ.

Tương tự xét

y3+xyz=795; z3+xyz=975 ta đc: y,z là số lẻ

Vậy x3 là 1 số lẻ; xyz là 1 số lẻ, do đó x3+xyz là một số chẵn trái với đề bài

Vậy không tồn tại các số nguyên x,y,z thỏa mãn đẳng thức đã cho

Bài 2:

Ta có: VP=1984

Vì 2x-2y=1984>0 =>x>y

=>VT=2x-2y=2y(2x-y-1)

pt trở thành:

2y(2x-y-1)=26*31 

\(\Rightarrow\begin{cases}2^y=2^6\left(1\right)\\2^{x-y}-1=31\left(2\right)\end{cases}\)

Từ pt (1) =>y=6

Thay y=6 vào pt (2) đc:

2x-6-1=31 => 2x-6=32

=>2x-6=25

=>x-6=5 <=>x=11

Vậy x=11 và y=6

 

 

 

 

Kiều Thuỷ Linh
Xem chi tiết
Nguyễn Quang Tùng
5 tháng 12 2016 lúc 21:08

giả sử có các số nguyên x,y,z thỏa mãn các đẳng thức đã cho 

xét x^3 + xyz= 975 ta có

x^3 + xyz= x(x^2+yz)=975 => x là số lẻ

tương tự xết y^3 + xyz và z^3 + xyz ta cũng đc y,z là số lẻ

x là số lẻ => x^3 là số lẻ 

=> x^3+xyz là số chẵn 

trái với đề bài nên ko tồn tại số nguyên x,y,z thỏa mãn đẳng thức đã cho

Phạm Minh Tuấn
Xem chi tiết
Nguyễn Lệ Ngân
4 tháng 9 2016 lúc 10:45

Ta có : x3 + xyz = x(x2+yz)=957 là số lẻ => x là số lẻ

Tương tự: y, z cũng là số lẻ

Do đó : x3 là số lẻ, xyz là số lẻ ( vì x,y,z là số lẻ)

Nên : x3 + xyz là số chẵn ( trái với đề bài)

Vậy: ko có các số nguyên x,y,z nào đồng thời thỏa mãn 3 đẳng thức trên

Tina Linh yêu chị Linh K...
Xem chi tiết
Văn Thắng
25 tháng 9 2017 lúc 19:42

TH1:

Nếu x,y,z <0

thì (1),(2),(3) <0

TH2:

Nếu x,y,z >0

Thì(1),(2),(3)>0

TH3:

Nếu x,y,z =0

Thì (1),(2),(3)=0

shunnokeshi
Xem chi tiết
Bùi Thiên Phước
Xem chi tiết