Các anh chị giúp em với :D
Cho số nguyên dương a. Xét các số có dạng: a + 15 ; a + 30 ; a + 45 ; … ; a + 15n. Chứng minh rằng trong các số đó, tồn tại hai số mà hai chữ số đầu tiên là 96.
- Em hỏi trên olm thì chưa thấy ai trả lời nên đem lên đây, mà anh chị biết thì giúp em với ạ :D
Cho số nguyên dương a. Xét các số có dạng: a + 15 ; a + 30 ; a + 45 ; … ; a + 15n. Chứng minh rằng trong các số đó, tồn tại hai số mà hai chữ số đầu tiên là 96.
Ta sẽ chứng minh tồn tại các số tự nhiên m,p sao cho :
96 000 .. 000 + a + 15p < 97 000 .... 000
m chữ số 0 m chữ số 0
Tức là : \(96\frac{a}{10^m}+\frac{15p}{10^m}< 97\left(1\right)\).Gọi \(a+15\)là số có \(k\)chữ số : \(10^{k1}a+15< 10^k\)
\(\Rightarrow\frac{1}{10}\le\frac{a}{10^k}+\frac{15}{10^k}< 1\left(2\right).\)Đặt \(x_n=\frac{a}{10^k}+\frac{15p}{10^k}\). Theo \(\left(2\right)\)
Ta có : \(x_1< 1\)và \(\frac{15}{10^k}< 1\)
Cho \(n\)nhận lần lượt các giá trị \(2;3;4;...;\)các giá trị nguyên của \(x_n\)tăng dần ,mỗi lần tăng không quá 1 đơn vị , khi đó [ \(x_n\)sẽ trải qua các giá trị \(1,2,3,\)Đến một lúc ta có \(\left[x_p\right]=96\).Khi đó \(96x_p\)tức là \(96\frac{a}{10^k}+\frac{15p}{10^k}< 97\). Bất đẳng thức \(\left(1\right)\)đợt chứng minh
Giúp mình nhé
Cho số nguyên dương a. Xét các số có dạng: a + 15 ; a + 30 ; a + 45 ; … ; a + 15n. Chứng minh rằng trong các số đó, tồn tại hai số mà hai chữ số đầu tiên là 96.
link xem bài giải nè bạn http://giaoan.violet.vn/present/show/entry_id/7725005
tick đúng cho mk nha
????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Cho số nguyên dương a. Xét các số có dạng : a+15; a+30; a+45...; a+15n. Chứng minh rằng trong các số đó,tồn tại 2 số mà 2 chữ số dầu tiên là 96
Các bn giải giúp mik vs ạ
Các bạn giúp mình nha !!! nhanh lên nha đang đi thi !!! ^_^
Cho số nguyên dương a. Xét các số có dạng: a + 15 ; a + 30 ; a + 45 ; … ; a + 15n. Chứng minh rằng trong các số đó, tồn tại hai số mà hai chữ số đầu tiên là 96.
tìm các số nguyên n để các phân số sau có giá trị là 1 số nguyên A. n-5/n-3 B. 2n+1/n+1
cho n thuộc z . chứng tỏ các phân số sau là phân số tối giản
A. n+7/n+6 B. 3n+2/n+1
ANH CHỊ GIẢI GIÚP EM VỚI ANH CHỊ GHI CÁC BƯỚC LÀM GIÚP EM VS Ạ EM CẢM ƠN
Câu 1:
a) \(\dfrac{n-5}{n-3}\)
Để \(\dfrac{n-5}{n-3}\) là số nguyên thì \(n-5⋮n-3\)
\(n-5⋮n-3\)
\(\Rightarrow n-3-2⋮n-3\)
\(\Rightarrow2⋮n-3\)
\(\Rightarrow n-3\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
Ta có bảng giá trị:
n-1 | -2 | -1 | 1 | 2 |
n | -1 | 0 | 2 | 3 |
Vậy \(n\in\left\{-1;0;2;3\right\}\)
b) \(\dfrac{2n+1}{n+1}\)
Để \(\dfrac{2n+1}{n+1}\) là số nguyên thì \(2n+1⋮n+1\)
\(2n+1⋮n+1\)
\(\Rightarrow2n+2-1⋮n+1\)
\(\Rightarrow1⋮n+1\)
\(\Rightarrow n-1\inƯ\left(1\right)=\left\{\pm1\right\}\)
Ta có bảng giá trị:
n-1 | -1 | 1 |
n | 0 | 2 |
Vậy \(n\in\left\{0;2\right\}\)
Câu 2:
a) \(\dfrac{n+7}{n+6}\)
Gọi \(ƯCLN\left(n+7;n+6\right)=d\)
\(\Rightarrow\left[{}\begin{matrix}n+7⋮d\\n+6⋮d\end{matrix}\right.\)
\(\Rightarrow\left(n+7\right)-\left(n+6\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy \(\dfrac{n+7}{n+6}\) là p/s tối giản
b) \(\dfrac{3n+2}{n+1}\)
Gọi \(ƯCLN\left(3n+2;n+1\right)=d\)
\(\Rightarrow\left[{}\begin{matrix}3n+2⋮d\\n+1⋮d\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}3n+2⋮d\\3.\left(n+1\right)⋮d\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}3n+2⋮d\\3n+3⋮d\end{matrix}\right.\)
\(\Rightarrow\left(3n+3\right)-\left(3n+2\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy \(\dfrac{3n+2}{n+1}\) là p/s tối giản
Cho số nguyên dương a. Xét các số có dạng: a + 15 ; a + 30 ; a + 45 ; … ; a + 15n. Chứng minh rằng trong các số đó, tồn tại hai số mà hai chữ số đầu tiên là 96.
Xem thêm tại: https://olm.vn/hoi-dap/detail/89575883626.html
Cho số nguyên dương a. Xét các số có dạng: a + 15 ; a + 30 ; a + 45 ; … ; a + 15n. Chứng minh rằng trong các số đó, tồn tại hai số mà hai chữ số đầu tiên là 96
Cho số nguyên dương a. Xét các số có dạng: a + 15 ; a + 30 ; a + 45 ; … ; a + 15n. Chứng minh rằng trong các số đó, tồn tại hai số mà hai chữ số đầu tiên là 96.
Các anh chị, thầy cô xem giúp em bài này với ạ, em cảm ơn
Các số nguyên dương a,b,c sao cho a2+2b ; b2+3c ; c2+4a đều là các số chính phương