a) Chứng minh tam giác AMB=tam giác AMC
b) Bik AB=15cm, AM=12cm, tính MB
c)Vẽ MH vuông góc AB, MK vuông góc vớiAC. Chứng minh AH=AK
d) chứng minh HK//BC
Cho tam giác ABC cân tại A, vẽ AM vuông góc BC
a) Chứng minh tam giác AMB=tam giác AMC
b) Bik AB=15cm, AM=12cm, tính MB
c)Vẽ MH vuông góc AB, MK vuông góc vớiAC. Chứng minh AH=AK
d) chứng minh HK//BC
a: Xét ΔAMB vuông tại M và ΔAMC vuông tại M có
AB=AC
AM chung
Do đó: ΔABM=ΔACM
b: Xét ΔABM vuông tại M có \(AB^2=MB^2+AM^2\)
hay MB=9(cm)
c: Xét ΔAHM vuông tại H và ΔAKM vuông tại K có
AM chung
\(\widehat{HAM}=\widehat{KAM}\)
Do đó: ΔAHM=ΔAKM
Suy ra: AH=AK
d: Xét ΔABC có AH/AB=AK/AC
nên HK//BC
Cho tam giác ABC có AB = BC. Tia phân giác của góc BAC cắt cạnh BC tại M. Từ M kẻ MH vuông góc AB tại H ( H thuộc AB ) ; Từ M kẻ MK vuông góc với AC tại K ( K thuộc AC )
a) Chứng minh tam giác AMB = tam giác AMC
b) Chứng minh tam giác AHM = tam giác AKM từ đó so sánh hai đoạn thẳng AH và AK
c) Chứng minh HK vuông góc vs AM
a, xét tam giác AMB và tam giác AMC có:
AB=AC(gt)
\(\widehat{BAM}\) =\(\widehat{CAM}\)(gt)
AM chung
suy ra tam giác AMB= tam giác AMC(c.g.c)
b,xét tam giác AHM và tam giác AKM có:
AM cạnh chung
\(\widehat{HAM}\)=\(\widehat{KAM}\)(gt)
suy ra tam giác AHM=tam giác AKM(CH-GN)
Suy ra AH=AK
c,gọi I là giao điểm của AM và HK
xét tam giác AIH và tam giác AIK có:
AH=AK(theo câu b)
\(\widehat{IAH}\)=\(\widehat{IAK}\)(gt)
AI chung
suy ra tam giác AIH=tam giác AIK (c.g.c)
Suy ra \(\widehat{AIH}\)=\(\widehat{AIK}\)mà 2 góc này ở vị trí kề bù nên \(\widehat{AIH}\)=\(\widehat{AIK}\)= 90 độ
\(\Rightarrow\)HK vuông góc vs AM
cho tam giác ABC cân tại A,vẽ AM vuông góc BC,(M thuộc BC)
a)chứng minh tam giác AMB=tam giác AMC
b)vẽ MH vuông góc tại H và MK vuông góc AC tại K.chứng minh AH=AK.chứng minh HK//BC
a) Xét 2 tam giác vuông: AMB và AMC có:
AM: cạnh chung
AB = AC (gt)
suy ra: tam giác AMB = tam giác AMC (ch-cgv)
b) Tam giác AMB = tam giácAMC
suy ra: góc BAM = góc CAM
Xét 2 tam giác vuông: AMH và AMK có:
AM: chung
góc HAM = góc
suy ra tam giác AMH = tam giác AMK
suy ra AH = AK
cho tam giác abc vuông tại a trên tia đối của ab lấy am sao cho ab=am
a/chứng minh tam giác abc = tam giác amc
b/kẻ ah vuông góc vói bc tại h ak vuông góc mc tại k chứng minh bh =mk
c/ chứng minh bm song song vói hk
a: Xét ΔABC vuông tại A và ΔAMC vuông tại A có
AB=AM
AC chung
=>ΔABC=ΔAMC
b: Xét ΔAKM vuông tại K và ΔAHB vuông tại H có
AM=AB
góc M=góc B
=>ΔAKM=ΔAHB
=>KM=HB
KM+CK=CM
HB+CH=CB
mà KM=HB và CM=CB
nên CK=CH
c: Xét ΔCMB có CK/CM=CH/CB
nên KH//MB
cho tam giác abc vuông tại a trên tia đối của ab lấy am sao cho ab=am
a/chứng minh tam giác abc = tam giác amc
b/kẻ ah vuông góc vói bc tại h ak vuông góc mc tại k chứng minh bh =mk
c/ chứng minh bm song song vói hk
a)Ta có: tam giác ABC là tam giác cân
\(=>AB=AC\)
Mà \(AB=4cm\)
=>>AC=4cm
b) Nếu góc B=60 độ =>tgiác ABC là tam giác đèu(t/c)
c) Xét tam giác ABM và tgiác ACM có
AB=AC(cmt)
AM: chung
==>>tgiác ABM=tgiác ACM( ch-cgv)
d) Ta có: tam giác ABM=tgiác ACM(cmt)
=>\(\widehat{AMC}=\widehat{AMB}\)(2 góc tương ứng)
Mà: \(\widehat{AMC+}\widehat{AMC}=180^0\)
\(=>\widehat{AMC=}\widehat{AMB}=\frac{180^0}{2}=90^0\)
=> AMvuông góc vs BC
e) Xét tgiác BMH và tgiác CMK có :
BM=CM( 2 cạnh tương ứng , cmt(a))
\(\widehat{B}=\widehat{C}\)( tgiác ABC là tgiác đều)
==>>>tgiác BMH=tgiác CMK(ch-gn)
=>MH=MK( 2 cạnh tương ứng)
Cho tam giác ABC có góc B = góc C tia phân giác trong góc A cắt BC tại M vẽ MH vuông góc với AB (H thuộc AB ) MK vuông góc AC ( K thuộc AC ) chứng minh: a) tam giác AMB = tam giác AMC b) MH = MK
a: Xét ΔAMB và ΔAMC có
AB=AC
\(\widehat{BAM}=\widehat{CAM}\)
AM chung
Do đó: ΔAMB=ΔAMC
b: Xét ΔAHM vuông tại H và ΔAKM vuông tại K có
AM chung
\(\widehat{HAM}=\widehat{KAM}\)
Do đó: ΔAHM=ΔAKM
Suy ra: MH=MK
cho tam giác ABC cân tại A lấy M là trung điểm của BC cho AB=4 cm tính cạnh AC
b nếu cho góc B=60 độ thì tam giác ABC là tam giác gì giải thích
c, chứng minh tam giác AMB= tam giác AMC
chứng minh AM vuông góc BC
d, Kẻ MH vuông có AB , ( H thuộc AB) MK vuông góc AC ( k thuộc AC) . chứng minh MH = MK
mk ko biết xin lỗi bạn nha!!!
mk ko biết xin lỗi bạn nha!!!
mk ko biết xin lỗi bạn nha!!!
mk ko biết xin lỗi bạn nha!!!
Cho tam giác ABC cân tại A ( Tia phân giác của góc A cắt cạnh BC tại M Từ M kẻ MH và MK .
a) Chứng minh: Tam giác AMB = tam giác AMC
b) Chứng minh: AM vuông góc BC
a: Xét ΔAMB và ΔAMC có
AB=AC
\(\widehat{BAM}=\widehat{CAM}\)
AM chung
Do đó: ΔAMB=ΔAMC
b: ta có: ΔABC cân tại A
mà AM là đường phân giác
nên AM là đường cao