Đơn giản các biểu thức sau:
a, \(-\sqrt[3]{81x^{10}y^5}\)
b, \(\frac{\sqrt{80x^3}}{\sqrt{2x}}\)
Đơn giản biểu thức sau :
\(M=\frac{\left(a^{\frac{1}{3}}+b^{\frac{1}{3}}\right)^2}{\sqrt[3]{ab}}:\left(2+\sqrt[3]{\frac{a}{b}}+\sqrt[3]{\frac{b}{a}}\right)\)
\(M=\frac{\left(a^{\frac{1}{3}}+b^{\frac{1}{3}}\right)^2}{\sqrt[3]{ab}}:\left(2+\sqrt[3]{\frac{a}{b}}+\sqrt[3]{\frac{b}{a}}\right)=\frac{\left(a^{\frac{1}{3}}+b^{\frac{1}{3}}\right)^2}{\sqrt[3]{ab}}:\frac{2\sqrt[3]{ab}+\left(\sqrt[3]{a}\right)^2+\left(\sqrt[3]{a}\right)^2}{\sqrt[3]{ab}}\)
\(=\frac{\left(\sqrt[3]{a}+\sqrt[3]{b}\right)^2}{\sqrt[3]{ab}}-\frac{\sqrt[3]{ab}}{\left(\sqrt[3]{a}+\sqrt[3]{b}\right)^2}=1\)
đơn giản biểu thức \(\frac{1}{3+\sqrt{3}}+\frac{1}{3\sqrt{5}+5\sqrt{3}}+...+\frac{1}{101\sqrt{103}+103\sqrt{101}}\)
Bài 1: Tìm điều kiện xác đinh của các biểu thức sau
a, A=\(\frac{x-1}{\sqrt{x-1}}+\sqrt{2x+5}\)
b, B=\(\frac{\sqrt{-x}}{x^2-3}-2019\)
Bài 2: Rút gọn
a, A=\(\frac{15-9\sqrt{2}}{5\sqrt{5}-3\sqrt{10}}-\sqrt{\frac{16}{5}}-\frac{1}{\sqrt{10}+\sqrt{5}}\)
b, B=\(\frac{\sqrt{145\sqrt{154}}-\sqrt{9-\sqrt{77}}}{1-\frac{1}{\sqrt{2}}}\)
Đơn giản biểu thức sau :
\(M=lg\left|\log_{\frac{1}{a^3}}\sqrt[5]{a\sqrt{a}}\right|\)
\(M=lg\left|\log_{\frac{1}{a^3}}\sqrt[5]{a\sqrt{a}}\right|=lg\left|\log_{\frac{1}{a^3}}\sqrt[5]{a.a^{\frac{1}{2}}}\right|=lg\left|\log_{\frac{1}{a^3}}\left(a^{\frac{3}{2}}\right)^{\frac{1}{5}}\right|=lg\left|\log_{a^{-3}}a^{\frac{3}{10}}\right|=lg\left|-\frac{1}{10}=lg\frac{1}{10}=-1\right|\)
cho a,b > 0. Hãy đơn giản biểu thức:
\(T=\frac{\sqrt{a^3+2a^2b}+\sqrt{a^4+2a^3b}-\sqrt{a^3}-a^2b}{\sqrt{\left(2a+b-\sqrt{a^2+2ab}\right)}.\left(\sqrt[3]{a^2}-\sqrt[6]{a^5}+a\right)}\)
Đơn giản biểu thức sau :
\(T=\left(\sqrt[7]{\frac{a}{b}\sqrt[5]{\frac{b}{a}}}\right)^{\frac{35}{4}}\)
\(T=\left(\sqrt[7]{\frac{a}{b}\sqrt[5]{\frac{b}{a}}}\right)^{\frac{35}{4}}=\left\{\left[\left(\frac{b}{a}\right)^{-1}\left(\frac{b}{a}\right)^{\frac{1}{5}}\right]^{\frac{1}{7}}\right\}^{\frac{35}{4}}=\left[\left(\frac{b}{a}\right)^{-\frac{4}{5}}\right]=\frac{a}{b}\)
\(T=\left(\sqrt[7]{\frac{a}{b}\sqrt[5]{\frac{b}{a}}}\right)^{\frac{35}{4}}=\sqrt[4]{\left(\sqrt[7]{\frac{a}{b}\sqrt[5]{\frac{b}{a}}}\right)^{35}}=\sqrt[4]{\left(\frac{a}{b}\sqrt[5]{\frac{b}{a}}\right)^5}\)
\(=\sqrt[4]{\left(\frac{a}{b}\right)^5.\frac{b}{a}}=\sqrt[4]{\left(\frac{a}{b}\right)^4}=\frac{a}{b}\)
Cho a,b > 0. Hãy đơn giản biểu thức :
\(T=\frac{\sqrt{a^3+2a^2b}+\sqrt{a^4+2a^3b}-\sqrt{a^3}-a^2b}{\sqrt{\left(2a+b-\sqrt{a^2+2ab}\right)}.\left(\sqrt[3]{a^2}-\sqrt[6]{a^5}+a\right)}\)
bài này mình cũng dò lại đề rồi mình chép đúng đấy mà không làm được nên mới nhờ giải
Cố gắng hơn nữa bạn cho mình biết là cái đề này bạn chép từ bộ đề nào để mình lên mạng tìm thử xem sao. Biết đâu cái đề bạn cầm trên tay nó bị lỗi đánh máy thì sao.
cho a, b >0. hãy đơn giản biểu thức \(\frac{\sqrt{a^{3^{ }}+2a^2b}+\sqrt{a^4+2ab}-\sqrt{a^3}-a^2b}{\sqrt{\left(2a+b-\sqrt{a^2+2ab}\right)}.\left(\sqrt[3]{a^2}-\sqrt[6]{a^5}+a\right)}\)
(Nghi binh 20/09)
Giải các phương trình sau:
a)\(32x^4-80x^3+50x^2+4x-3-4\sqrt{x-1}=0\)
b) \(\sqrt{5x^3-12x^2+12x-7}=\frac{x^2}{2}+2x-3\)
c)\(\sqrt{2x^2-16x+41}+\sqrt{3x^2-24x+64}=7\)
d)\(x+\sqrt{2x-3}=1+\sqrt{x-1}+\sqrt{x^2-3x+3}\)
e) \(\left(2x-1\right)\sqrt{x^2+1}=x^2+4x-5\)
f)\(\sqrt{8+\sqrt{x}}+\sqrt{5-\sqrt{x}}=5\)
g)\(2\left(x^2+2x+3\right)=5\sqrt{x^3+3x^2+3x+2}\)
h)\(\sqrt[3]{81x-8}=x^3-2x^2+\frac{4}{3}x-2\)
i)\(\sqrt{x\left(x+1\right)}+\sqrt{x\left(x+2\right)}=\sqrt{x\left(x-3\right)}\)
\(\sqrt{2x^2-16x+41}+\sqrt{3x^2-24x+64}=7\)
Ta đánh giá vế phải \(\sqrt{2x^2-16x+41}+\sqrt{3x^2-24x+64}=\sqrt{2\left(x-4\right)^2+9}+\sqrt{3\left(x-4\right)^2+16}\ge\sqrt{9}+\sqrt{16}=3+4=7\)(Do \(\left(x-4\right)^2\ge0\forall x\))
Như vậy, để \(\sqrt{2x^2-16x+41}+\sqrt{3x^2-24x+64}=7\)(hay dấu "=" xảy ra) thì \(\left(x-4\right)^2=0\)hay x = 4
Vậy nghiệm duy nhất của phương trình là 4
f, \(\sqrt{8+\sqrt{x}}+\sqrt{5-\sqrt{x}}=5\left(đk:25\ge x\ge0\right)\)
\(< =>\sqrt{8+\sqrt{x}}-\sqrt{9}+\sqrt{5-\sqrt{x}}-\sqrt{4}=0\)
\(< =>\frac{8+\sqrt{x}-9}{\sqrt{8+\sqrt{x}}+\sqrt{9}}+\frac{5-\sqrt{x}-4}{\sqrt{5-\sqrt{x}}+\sqrt{4}}=0\)
\(< =>\frac{\sqrt{x}-1}{\sqrt{8+\sqrt{x}}+\sqrt{9}}-\frac{\sqrt{x}-1}{\sqrt{5-\sqrt{x}}+\sqrt{4}}=0\)
\(< =>\left(\sqrt{x}-1\right)\left(\frac{1}{\sqrt{8+\sqrt{x}}+\sqrt{9}}-\frac{1}{\sqrt{5-\sqrt{x}}+\sqrt{4}}\right)=0\)
\(< =>x=1\)( dùng đk đánh giá cái ngoặc to nhé vì nó vô nghiệm )