CM: 1/51 +1/52+1/53 +................+1/100 < 5/6
Cho S = 1/51 + 1/52 + 1/53 + ... + 1/100 . CMR 7/12 < S < 5/6
Ta có: \(\frac{1}{51}>\frac{1}{75};\frac{1}{52}>\frac{1}{75};\ldots;\frac{1}{74}>\frac{1}{75};\frac{1}{75}=\frac{1}{75}\)
Do đó: \(\frac{1}{51}+\frac{1}{52}+\cdots+\frac{1}{75}>\frac{1}{75}+\frac{1}{75}+\cdots+\frac{1}{75}=\frac{25}{75}=\frac13\) (1)
Ta có: \(\frac{1}{76}>\frac{1}{100};\frac{1}{77}>\frac{1}{100};\ldots;\frac{1}{99}>\frac{1}{100};\frac{1}{100}=\frac{1}{100}\)
Do đó: \(\frac{1}{76}+\frac{1}{77}+\cdots+\frac{1}{100}>\frac{1}{100}+\frac{1}{100}+\cdots+\frac{1}{100}=\frac{25}{100}=\frac14\) (2)
Từ (1),(2) ta có: \(\frac{1}{51}+\frac{1}{52}+\cdots+\frac{1}{75}+\frac{1}{76}+\frac{1}{77}+\cdots+\frac{1}{100}>\frac13+\frac14\)
=>\(S>\frac13+\frac14=\frac{7}{12}\) (3)
Ta có: \(\frac{1}{51}<\frac{1}{50};\frac{1}{52}<\frac{1}{50};\ldots;\frac{1}{75}<\frac{1}{50}\)
Do đó: \(\frac{1}{51}+\frac{1}{52}+\cdots+\frac{1}{75}<\frac{1}{50}+\frac{1}{50}+\cdots+\frac{1}{50}=\frac{25}{50}=\frac12\) (4)
Ta có: \(\frac{1}{76}<\frac{1}{75};\frac{1}{77}<\frac{1}{75};\ldots;\frac{1}{100}<\frac{1}{75}\)
Do đó: \(\frac{1}{76}+\frac{1}{77}+\cdots+\frac{1}{100}<\frac{1}{75}+\frac{1}{75}+\cdots+\frac{1}{75}=\frac{25}{75}=\frac13\) (5)
Từ (4),(5) suy ra \(\frac{1}{51}+\frac{1}{52}+\cdots+\frac{1}{75}+\frac{1}{76}+\frac{1}{77}+\cdots+\frac{1}{100}<\frac12+\frac13\)
=>\(S<\frac56\) (6)
Từ (3),(6) suy ra 7/12<S<5/6
tính 1/51+1/52+1/53+....+1/100
1/1*2+1/3*4+1/5*6+...+1/99*100
1-1/2+1/3-1/4+1/5-1/6+.....+1/99-1/100=1/51+1/52+1/53+1/54+..+1/100
Xét VT:
\(VT=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+....+\frac{1}{99}-\frac{1}{100}\)
\(VT=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{99}+\frac{1}{100}-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{99}+\frac{1}{100}-\left(1+\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{50}\right)\)
\(=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+....+\frac{1}{100}=VP\)
=>đpcm
Ta xét vế trái:
\(vt=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}=\left(1+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)
\(VT=VP\)
Chứng tỏ: 1- 1/2 + 1/3 - 1/4 + 1/5 - 1/6 +.........+ 1/99 - 1/100 = 1/51 + 1/52 + 1/53 + .....+ 1/100
1 - 1/2 + 1/3 - 1/4 +...+ 1/99 - 1/100
= (1 + 1/3 +...+ 1/99) - (1/2 + 1/4 +...+ 1/100)
= (1+1/2+1/3+...+1/100) - 2(1/2+1/4+...+1/100)
= (1+1/2+1/3+...+1/100) - (1+1/2+...+1/50)
= 1/51+1/52+...+1/100 (đpcm)
Bạn đã được chuyển khoản số tiền 1.000.000.000 VND
Chứng minh :(1+1/3+1/5+...+1/99)-(1/2+1/4+1/6+...+1/100)=1/51+1/52+1/53+...+1/100
Chứng minh: 1- 1\2 + 1\3 - 1\4 + 1 \5 - 1\6 + ....... + 1\99 -1\100 = 1\51 + 1\52 + 1\53 + ..........+1\100
đây là j`? đầu đề hổng có, làm sao mà giải đc?????
so sánh G= 1/2-3/4+5/6-...-199/200 và 1/51+1/52+1/53+...+1/100
cho s = 1/50 + 1/51 + 1/52 + 1/53 + .......... + 1/99 + 1/100 . hãy so sánh s với 5/6 cứu mình với
Sửa đề: \(S=\frac{1}{51}+\frac{1}{52}+\cdots+\frac{1}{100}\)
Ta có: \(\frac{1}{51}<\frac{1}{50};\frac{1}{52}<\frac{1}{50};\ldots;\frac{1}{75}<\frac{1}{50}\)
Do đó: \(\frac{1}{51}+\frac{1}{52}+\cdots+\frac{1}{75}<\frac{1}{50}+\frac{1}{50}+\cdots+\frac{1}{50}=\frac{25}{50}=\frac12\) (1)
Ta có: \(\frac{1}{76}<\frac{1}{75};\frac{1}{77}<\frac{1}{75};\ldots;\frac{1}{100}<\frac{1}{75}\)
Do đó: \(\frac{1}{76}+\frac{1}{77}+\cdots+\frac{1}{100}<\frac{1}{75}+\frac{1}{75}+\cdots+\frac{1}{75}=\frac{25}{75}=\frac13\) (2)
Từ (1),(2) suy ra \(\left(\frac{1}{51}+\frac{1}{52}+\cdots+\frac{1}{75}\right)+\left(\frac{1}{76}+\frac{1}{77}+\cdots+\frac{1}{100}\right)<\frac12+\frac13\)
=>\(S<\frac56\)
Chứng Minh:
1/1*2+1/3*4+1/5*6+...+1/97*98+1/99*100=1/51+1/52+1/53+...+1/99+1/100