Cho S = 1/51 + 1/52 + 1/53 + ... + 1/100 . CMR 7/12 < S < 5/6
Chứng Minh:
1/1*2+1/3*4+1/5*6+...+1/97*98+1/99*100=1/51+1/52+1/53+...+1/99+1/100
M=1/2-3/4+5/6-7/8+...+197/198-199/200
N=1/51+1/52+1/53+...+1/100
Tính M : N
Cho M= 1/2-3/4+5/6-7/8+...+197/198-199/200
N= 1/51+1/52+1/53+...+1/100
Tính N:M
tìm B=(1/2+1/6+1/12+...+1/9900)/(1/51+1/52+1/53+...+1/100)
Cho A = 1/(1.2) +1/(3.4) +1/(5.6) +....+1/(99.100)
B= 2011/51 +2011/52+ 2011/53 +...+2011/100
CM: B/A là số nguyên
A = \(\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\) . Chứng minh : \(\frac{7}{12}< A< \frac{5}{6}\)
CMR :
\(\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)
\(=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+\frac{1}{100}\)
Chứng Minh: 1/1.2 + 1/2.3 + 1/3.4 + ... +1/99.100 = 1/51 + 1/52 +1/53 +1/54 +... + 1/100