\(y=\frac{\sqrt{x}}{\sqrt{x}+1}+\frac{2\sqrt{x}}{\sqrt{x}-1}-\frac{3x+1}{x-1}\)
\(x+y=4\Rightarrow\frac{x+y}{2}=2\Rightarrow\sqrt{\frac{x+y}{2}}=\sqrt{2}\)
\(P.\sqrt{\frac{x+y}{2}}=\sqrt{2}\sqrt{x^2+\frac{1}{x^2}}+\sqrt{2}\sqrt{x^2+\frac{1}{x^2}}\)
\(\Leftrightarrow\sqrt{2}P=\sqrt{1+1}\sqrt{x^2+\frac{1}{x^2}}+\sqrt{1+1}\sqrt{x^2+\frac{1}{x^2}}\)
\(\Leftrightarrow\sqrt{2}P\ge x+\frac{1}{x}+y+\frac{1}{y}\)
\(x+\frac{1}{x}=\left(\frac{1}{x}+4x\right)-3x\ge4-3x\)
\(y+\frac{1}{y}=\left(\frac{1}{y}+4y\right)-3y\ge4-3y\)
\(\Rightarrow\sqrt{2}P\ge8-3\left(x+y\right)=8-3.4=-4\)
đến đay sau răng
rút gọn:
a)\(\left(\frac{1}{2+2\sqrt{x}}+\frac{1}{2-2\sqrt{x}}-\frac{x^2+1}{1-x^2}\right)\times\left(1+\frac{1}{x}\right)\)
b)\(\left(\frac{2\sqrt{xy}}{x-y}+\frac{\sqrt{x}-\sqrt{y}}{2\sqrt{x}+\sqrt{y}}\right)\times\frac{2\sqrt{x}}{\sqrt{x}+\sqrt{y}}+\frac{\sqrt{y}}{\sqrt{y}-\sqrt{x}}\)
c)\(\left(\frac{x-1}{\sqrt{x}-1}+\frac{x\sqrt{x}-1}{1-x}\right)\div\frac{\left(\sqrt{x}-1\right)^2+\sqrt{x}}{\sqrt{x}+1}\)
a, dk \(x\ge0.x\ne1\)
\(\left(\frac{1+\sqrt{x}+1-\sqrt{x}}{2\left(1-x\right)}-\frac{x^2+1}{1-x^2}\right)\left(\frac{x+1}{x}\right)\)=\(\left(\frac{1}{1-x}-\frac{x^2+1}{1-x^2}\right)\left(\frac{x+1}{x}\right)\)
=\(\left(\frac{1+x-x^2-1}{1-x^2}\right)\left(\frac{x+1}{x}\right)=\frac{x\left(1-x\right)\left(x+1\right)}{x\left(1-x\right)\left(1+x\right)}=1\)
phan b,c ban tu lam not nhe dai lam mk ko lam dau mk co vc ban rui
\(\frac{\sqrt{x}}{\sqrt{x}+3}+\frac{2\sqrt{x}}{\sqrt{x}-3}-\frac{3x+9}{x-9}\)
\(\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{1}{\sqrt{x}+2}-\frac{3\sqrt{x}}{x+\sqrt{x}-2}\)
\(\frac{2}{\sqrt{x}-1}+\frac{2}{\sqrt{x}+1}-\frac{5-\sqrt{x}}{x-1}\)
\(\left(\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\frac{\sqrt{x}-2}{x-1}\right)\cdot\frac{\sqrt{x}+1}{\sqrt{x}}\)
\(B=\left(\frac{x\sqrt{x}+x+\sqrt{x}}{x\sqrt{x}-1}-\frac{\sqrt{x}+3}{1-\sqrt{x}}\right).\frac{x-1}{2x+\sqrt{x}-1}\) ĐKXĐ: ...
\(=\frac{\left(x\sqrt{x}+x+\sqrt{x}\right)\left(1-\sqrt{x}\right)-\left(\sqrt{x}+3\right)\left(x\sqrt{x}-1\right)}{\left(x\sqrt{x}-1\right)\left(1-\sqrt{x}\right)}.\frac{x-1}{2x+2\sqrt{x}-\sqrt{x}-1}\)
\(=\frac{x\sqrt{x}+x+\sqrt{x}-x^2-x\sqrt{x}-x-x^2+\sqrt{x}-3x\sqrt{x}+3}{\left(x\sqrt{x}-1\right)\left(1-\sqrt{x}\right)}.\frac{x-1}{2\sqrt{x}\left(\sqrt{x}+1\right)-\left(\sqrt{x}+1\right)}\)
\(=\frac{-3x\sqrt{x}+2\sqrt{x}-2x^2+3}{\left(x\sqrt{x}-1\right)\left(1-\sqrt{x}\right)}.\frac{x-1}{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{3-3x\sqrt{x}+2\sqrt{x}-2x^2}{\left(x\sqrt{x}-1\right)\left(1-\sqrt{x}\right)}.\frac{1}{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{3\left(1-x\sqrt{x}\right)+2\sqrt{x}\left(1-x\sqrt{x}\right)}{\left(x\sqrt{x}-1\right)\left(1-\sqrt{x}\right)}.\frac{1}{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{\left(2\sqrt{x}+3\right)\left(1-x\sqrt{x}\right)}{\left(x\sqrt{x}-1\right)\left(1-\sqrt{x}\right)}.\frac{x-1}{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{-2\sqrt{x}-3}{1-\sqrt{x}}.\frac{x-1}{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{-2\sqrt{x}-3}{1-\sqrt{x}}.\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{2\sqrt{x}-1}\)
\(=\frac{2\sqrt{x}+3}{2\sqrt{x}-1}\)
Tìm tập xác định của các hàm số sau:
a) y = \(\frac{\sqrt{x+1}}{x^2-x-6}\)
b) y = \(\sqrt{6-3x}\) - \(\sqrt{x-1}\)
c) y = \(\frac{\sqrt{2-x}+\sqrt{x+2}}{x}\)
d) y = \(\frac{\sqrt{3x-2}+6x}{\sqrt{4-3x}}\)
e) y = \(\sqrt{6-x}\) + \(\frac{2x+1}{1+\sqrt{x-1}}\)
f) y = \(\frac{2x+9}{\left(x+4\right)\sqrt{x+3}}\)
g) y = \(\frac{\sqrt{x^2-2x+3}}{x-3\sqrt{x}+2}\)
h) f(x) = \(\frac{1}{\sqrt{1-\sqrt{1+4x}}}\)
i) y = \(\frac{2x^2}{\sqrt{x^2-3x+2}}\)
giải các phương trình vô tỉ sau
\(\frac{3}{\sqrt{x}+\sqrt{y}}+\frac{\sqrt{y}}{\sqrt{y}+2}+\frac{\sqrt{y}}{5}+\frac{2}{\sqrt{x}+3}=2\)
\(\sqrt{3x^2-1}+\sqrt{x^2-x}-x\sqrt{x^2+1}=\frac{1}{2\sqrt{2}}\left(7x^2-x+4\right)\)
giúp mình với nhé
xác định hàm số
a, \(y=\sqrt{x^2+x-4}\)
b , \(y=\frac{1}{x^2+1}\)
c, y= l 2x - 3 l
d , \(y=\frac{1}{x^2-3x}\)
e , \(y=\sqrt{1-x}+\frac{1}{x\sqrt{1}+x}\)
f , \(y=\frac{2x-1}{\sqrt{x\sqrt{\left(x-4\right)}}}\)
g , \(y=\sqrt{3+x}+\frac{1}{x^2-1}\)
h , \(y=\frac{1}{\sqrt{2x^2-4x+4}}\)
i, \(y=\sqrt{6-x}+2x\sqrt{2x+1}\)
j, \(y=\frac{x^2+1}{\sqrt{2-5}}+x\sqrt{1+x}\)
k, \(y=\frac{1}{x^2+3x+3}+\left(x+2\right)\sqrt{x+3}\)
l, \(y=\sqrt[3]{\frac{3x+5}{x^2-1}}\)
Rút gọn
\(1.A=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
\(2.B=\left(\frac{\sqrt{a}+1}{\sqrt{ab}+1}+\frac{\sqrt{ab}+\sqrt{a}}{\sqrt{ab}-1}-1\right):\left(\frac{\sqrt{a}+1}{\sqrt{ab}+1}-\frac{\sqrt{ab}+\sqrt{a}}{\sqrt{ab}-1}+1\right)\)
\(3.C=\left(\frac{2x-1+\sqrt{x}}{1-x}+\frac{2x\sqrt{x}+x-\sqrt{x}}{1+x\sqrt{x}}\right).\left(\frac{\left(x-\sqrt{x}\right)\left(1-\sqrt{x}\right)}{2\sqrt{x}-1}\right)\)