Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
JOKER_Mizukage Đệ tứ
Xem chi tiết
Trần Hùng
Xem chi tiết
Nguyễn Hải Vanh
25 tháng 8 2023 lúc 13:47

Cần gấp ko bạn

Nếu gấp thì sang web khác thử

Trần Anh
Xem chi tiết
Trần Dương An
Xem chi tiết
Võ Quang Nhân
Xem chi tiết
Nguyễn Thị Minh Nhã
22 tháng 5 2022 lúc 19:42

P≤a2+2aab+2b2+b2+22bc+2c2+c2+22ca+2a2

P≤(a+2b)2+(b+2c)2+(c+2a)2

P≤(1+2)(a+b+c)=1+2

Dấu "=" xảy ra khi (a;b;c)=(0;0;1) và các hoán vị

TrịnhAnhKiệt
Xem chi tiết
Toru
6 tháng 8 2023 lúc 11:58

Có : a + b + c = 0

=> (a + b)5 = (-c)5

      a5 + 5a4b + 10a3b+ 10a2b3 + 5ab4 + b5 = -c5

      a5 + b5 + c5 = -5a4b - 10a3b2 - 10a2b3 - 5ab4

       a5 + b5 + c5 = -5ab(a3 + 2a2b + 2ab2 + b3)

      a5 + b5 + c= -5ab[(a3 + b3) + (2a2b + 2ab2)]

      a5 + b5 + c5 = -5ab[(a + b)(a2 - ab + b2) + 2ab(a + b)]

      a5 + b5 + c5 = -5ab(a + b)(a2 + b2 + ab)  

      a5 + b5 + c5 = 5abc(a2 + b2 + ab)   (do a+b+c=0=> a+b=-c)

      2(a5 + b5 + c5) = 5abc(2a2 + 2b2 + 2ab)

      2(a5 + b5 + c5) = 5abc[a2 + b2 +(a2 + 2ab + b2)]

      2(a5 + b5 + c5) = 5abc[a2 + b2 + (a + b)2]

      2(a5 + b5 + c5) = 5abc(a2 + b2 + c2)    (do a+b=-c=> (a +b )2 = c2

    \(\Leftrightarrow\) \(a^5+b^5+c^5=\dfrac{5}{2}abc\left(a^2+b^2+c^2\right)\)

Vậy...

Uyen Nguyen
Xem chi tiết
TrịnhAnhKiệt
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 8 2023 lúc 23:03

b: (3x-2)^5+(5-x)^5+(-2x-3)^5=0

Đặt a=3x-2; b=-2x-3

Pt sẽ trở thành:

a^5+b^5-(a+b)^5=0

=>a^5+b^5-(a^5+5a^4b+10a^3b^2+10a^2b^3+5ab^4+b^5)=0

=>-5a^4b-10a^3b^2-10a^2b^3-5ab^4=0

=>-5a^4b-5ab^4-10a^3b^2-10a^2b^3=0

=>-5ab(a^3+b^3)-10a^2b^2(a+b)=0

=>-5ab(a+b)(a^2-ab+b^2)-10a^2b^2(a+b)=0

=>-5ab(a+b)(a^2-ab+b^2+2ab)=0

=>-5ab(a+b)(a^2+b^2+ab)=0

=>ab(a+b)=0

=>(3x-2)(-2x-3)(5-x)=0

=>\(x\in\left\{\dfrac{2}{3};-\dfrac{3}{2};5\right\}\)

Bùi Việt Huy
Xem chi tiết
Nguyễn Việt Lâm
8 tháng 5 2023 lúc 15:31

Trước hết, với \(a+b+c=1\) ta có:

\(a^2+b^2+c^2=\left(a^2+b^2+c^2\right)\left(a+b+c\right)\)

\(=\left(a^3+ab^2\right)+\left(b^3+bc^2\right)+\left(c^3+ca^2\right)+a^2b+b^2c+c^2a\)

\(\ge2a^2b+2b^2c+2c^2a+a^2b+b^2c+c^2a\)

Hay \(a^2+b^2+c^2\ge3\left(a^2b+b^2c+c^2a\right)\)

Từ đó:

\(\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}=\dfrac{a^4}{a^2b}+\dfrac{b^4}{b^2c}+\dfrac{c^4}{c^2a}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{a^2b+b^2c+c^2a}\)

\(\ge\dfrac{3\left(a^2b+b^2c+c^2a\right)\left(a^2+b^2+c^2\right)}{a^2b+b^2c+c^2a}=3\left(a^2+b^2+c^2\right)\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{3}\)