So sánh : U=1.3.5...39/21.22.23...40 với
1/2^20-1
So sánh: V=\(\dfrac{1}{2^{20}-1}\) và U=\(\dfrac{1.3.5...99}{21.22.23...40}\)
Giải giúp tớ với tớ cần gấp!!!
ko giải đâu
đùa thôi =)
1. a) 1.3.5...39 / 21.22.23...40 = 1 / 220
b) 1.3.5...(2n + 1) / (n + 1)(n + 2) = 1 / 2n với n thuộc N*
Chứng minh rằng :
a) \(\dfrac{1.3.5.....39}{21.22.23.....40}=\dfrac{1}{2^{20}}\)
b) \(\dfrac{1.3.5....\left(2n-1\right)}{\left(n+1\right)\left(n+2\right)\left(n+3\right)...2n}=\dfrac{1}{2^n}\) với \(n\in\) N*
a) Vế trái \(=\dfrac{1.3.5...39}{21.22.23...40}=\dfrac{1.3.5.7...21.23...39}{21.22.23....40}=\dfrac{1.3.5.7...19}{22.24.26...40}\)
\(=\dfrac{1.3.5.7....19}{2.11.2.12.2.13.2.14.2.15.2.16.2.17.2.18.2.19.2.20}\\ =\dfrac{1.3.5.7.9.....19}{\left(1.3.5.7.9...19\right).2^{20}}=\dfrac{1}{2^{20}}\left(đpcm\right)\)
b) Vế trái
\(=\dfrac{1.3.5...\left(2n-1\right)}{\left(n+1\right).\left(n+2\right).\left(n+3\right)...2n}\\ =\dfrac{1.2.3.4.5.6...\left(2n-1\right).2n}{2.4.6...2n.\left(n+1\right)\left(n+2\right)...2n}\\ =\dfrac{1.2.3.4...\left(2n-1\right).2n}{2^n.1.2.3.4...n.\left(n+1\right)\left(n+2\right)...2n}\\ =\dfrac{1}{2^n}.\\ \left(đpcm\right)\)
CMR
1.3.5...39/21.22.23...40 = 1 /220
cmr 1.3.5....39/21.22.23......40=1/2^20
ai nhanh nhất mk tick
\(\frac{1.3.5...39}{21.22.23...40}=\frac{1}{2^{20}}\)
so sánh \(U=\frac{1.3.5.7....39}{21.22.23...40}\)và \(V=\frac{1}{2^{20}-1}\)
so sánh \(U=\frac{1.3.5.7....39}{21.22.23...40}\)và \(V=\frac{1}{2^{20}-1}\)
Chứng minh rằng \(\frac{1.3.5...39}{21.22.23...40}=\frac{1}{2^{20}}\)
Nhân cả tử và mẫu của phân số \(\frac{1.3.5...39}{21.22.23...40}\) ta được:
\(\frac{\left(1.3.5...39\right).\left(2.4.6...40\right)}{\left(21.22.23...40\right).\left(2.4.6...40\right)}=\frac{1.2.3...39.40}{21.22.23...40.\left[\left(1.2\right).\left(2.2\right)....\left(2.20\right)\right]}\)
\(=\frac{1.2.3...39.40}{21.22.23...40.\left(1.2.3...20\right).2^{30}}=\frac{1.2.3...39.40}{1.2.3...20.21....40.2^{20}}=\frac{1}{2^{20}}\)
Suy ra điều phải chứng minh.