CM: 1/2^2 + 1/3^2 +.......+ 1/2005^2 < 2004/2005
(1/2003+1/2004-1/2005)/(5/2003+5/2004-5/2005)-(2/2002+2/2003-2/2004)/(3/2002+3/2003-3/2004)
c = 2005/2 + 2005/3+ 2005/4+....+ 2005/2005 , d = 2006 / 1 + 2006 / 2 + 2006 / 3 +....+ 4009 / 2004 tính c-d
c = 2005/2 + 2005/3+ 2005/4+....+ 2005/2005 , d = 2006 / 1 + 2006 / 2 + 2006 / 3 +....+ 4009 / 2004 tính c-d
mik ko bít
I don't now
................................
.............
c = 2005/2 + 2005/3+ 2005/4+....+ 2005/2005 , d = 2006 / 1 + 2006 / 2 + 2006 / 3 +....+ 4009 / 2004 tính c-d
Tính
\(S=\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{2005\sqrt{2004}+2004\sqrt{2005}}\)
\(\forall n\inℕ^∗\)ta có:
\(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\left(n+1\right)^2n-n^2\left(n+1\right)}\)
\(=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\) (*)
Thay n=1; n=2; n=3; .....; n=2004 Ta có:
\(S=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2004}}-\frac{1}{\sqrt{2005}}\)
\(=1-\frac{1}{\sqrt{2005}}\)
c = 2005/2 + 2005/3+ 2005/4+....+ 2005/2005 , d = 2006 / 1 + 2006 / 2 + 2006 / 3 +....+ 4009 / 2004 tính c-d
mong các bạn giải sớm cho mk nha xin cảm ơn
Rút gọn
A=\(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{2005\sqrt{2004}+2004\sqrt{2005}}\)
Ta có
\(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n^2+n}\)
\(=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n+1}\sqrt{n}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
Từ đó ta có
\(A=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{2004}}-\frac{1}{\sqrt{2005}}\)
\(=1-\frac{1}{\sqrt{2005}}=\frac{\sqrt{2005}-1}{\sqrt{2005}}\)
So sánh:
A= 2005^2-2004/2005^3+1 VÀ B = 2005^2+2006/2005^3-1
giải chi tiết nha.
Giải:
\(A=\dfrac{2005^2-2004}{2005^3+1}\)
\(\Leftrightarrow A=\dfrac{2005^2-2005+1}{\left(2005+1\right)\left(2005^2-2005+1\right)}\)
\(\Leftrightarrow A=\dfrac{1}{2005+1}\left(1\right)\)
\(B=\dfrac{2005^2+2006}{2005^3-1}\)
\(\Leftrightarrow B=\dfrac{2005^2+2005+1}{\left(2005-1\right)\left(2005^2+2005+1\right)}\)
\(\Leftrightarrow B=\dfrac{1}{2005-1}\left(2\right)\)
Ta có:
\(\left(1\right)< \left(2\right)\)
\(\Leftrightarrow A< B\)
Vậy ...
Tính: A=(1*2004+2*2003+...+2004*1)/(1*2+2*3+...+2004*2005)