Ta có
\(\frac{1}{2^2}+\frac{1}{3^2}+.......+\frac{1}{2005^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2004.2005}\)
Mà \(\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{2004.2005}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{2004}-\frac{1}{2005}\)
\(=1-\frac{1}{2005}=\frac{2004}{2005}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+.....+\frac{1}{2005^2}< \frac{2004}{2005}\left(\text{đ}pcm\right)\)