CM:A= 8.2n+2n+1 chia hết cho 10
cho A=7n+3n-1 và B=7n+1+39n+10-1 (n là số tự nhiên)
CM:A chia hết cho 9 khi và chỉ khi B chia hết cho 9 và điều ngược lại
cho 102n - 1 chia hết cho11 chúng minh 102n-1+1 chia hết cho 11
ta có: 10^2n-1 = 10000..00-1= 9999..99(2n-1so9) chIA hết cho 11
ta lại có: 10^2n-1 +1= 1000..00+1= 1000...001(2n-2 so 0)
a) 2n+11 chia hết cho n+3
b) n+5 chia hết cho n-1
c) 3n+10 chia hết cho n+2
d) 2n+7 chia hết cho 2n+1
Mọi người giúp em nha
a) 2n + 11 chia hết cho n + 3
⇒ 2n + 6 + 5 chia hết cho n + 3
⇒ 2(n + 3) + 5 chia hết cho n + 3
⇒ 5 chia hết cho n + 3
⇒ n + 3 ∈ Ư(5) = {1; -1; 5; -5}
⇒ n ∈ {-2; -4; 2; -8}
b) n + 5 chia hết cho n - 1
⇒ n - 1 + 6 chia hết cho n - 1
⇒ 6 chia hết cho n - 1
⇒ n - 1 ∈ Ư(6) = {1; -1; 2; -2; 3; -3; 6; -6}
⇒ n ∈ {2; 0; 3; -1; 4; -2; 7; -5}
c) 3n + 10 chia hết cho n + 2
⇒ 3n + 6 + 4 chia hết cho n + 2
⇒ 3(n + 2) + 4 chia hết cho n + 2
⇒ 4 chia hết cho n + 2
⇒ n + 2 ∈ Ư(4) = {1; -1; 2; -2; 4; -4}
⇒ n ∈ {-1; -3; 0; -4; 2; -6}
d) 2n + 7 chia hết cho 2n + 1
⇒ 2n + 1 + 6 chia hết cho 2n + 1
⇒ 6 chia hết cho 2n + 1
⇒ 2n + 1 ∈ Ư(6) = {1; -1; 2; -2; 3; -3; 6; -6}
Mà: n ∈ N ⇒ 2n + 1 là số lẻ
⇒ 2n + 1 ∈ {1; -1; 3; -3}
⇒ n ∈ {0; -1; 1; -2}
1] 3n+1 thuộc Ư[10]
2] 13 chia hết cho[3n+1]
3] 2n+8 chia hết cho 2n+1
4] 6n+6 chia hết cho 2n+1
\(1.3n+1\inƯ\left(10\right)\)
Ta lập bảng xét giá trị
3n+1 | 1 | -1 | 2 | -2 | 5 | -5 | 10 | -10 |
3n | 0 | -2 | 1 | -3 | 4 | -6 | 9 | -11 |
n | 0 | -2/3 | 1/3 | -1 | 4/3 | -2 | 3 | -11/3 |
\(2.13⋮3n+1\)
\(\Rightarrow3n+1\inƯ\left(13\right)=\left\{\pm1;\pm13\right\}\)
Ta lập bảng xét g trị
3n+1 | 1 | -1 | 13 | -13 |
n | 0 | -2/3 | 4 | -14/3 |
\(3.2n+8⋮2n+1\)
\(\Rightarrow\left(2n+1\right)+7⋮2n+1\)
\(\Rightarrow7⋮2n+1\)
\(\Rightarrow2n+1\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
Ta lập bảng xét g trị
2n+1 | 1 | -1 | 7 | -7 |
2n | 0 | -2 | 6 | -8 |
n | 0 | -1 | 3 | -4 |
\(4.6n+6⋮2n+1\)
\(\Rightarrow6n+3+1⋮2n+1\)
\(\Rightarrow3.\left(2n+1\right)+1⋮2n+1\)
\(\Rightarrow1⋮2n+1\)
\(\Rightarrow2n+1\inƯ\left(1\right)=\left\{\pm1\right\}\)
Ta lập bảng xét g trị
2n+1 | 1 | -1 |
2n | 0 | -2 |
n | 0 | -1 |
Bài chứng minh hả bạn
ko đây là bài tìm n thuộc số tự nhiên
Tìm n thuộc N, biết:
1) 2n+3 chia hết 3n+1
2)2n-2 chia hết cho n-1
3) 5n-1 chia hết cho n-2
4)3n+1 chia hết cho 2n+2
5)2n-1 chia hết cho 5n-3
6)n-3 chia hết cho n+4
7) 3n+3 chia hết cho n+2
8)4n chia hết cho n-3
9)5n+1 chia hết cho n+3
10)2n-2 chia hết cho n+3
2) Ta có : 2n - 2 = 2(n - 1) chia hết cho n - 1
Nên với mọi giá trị của n thì 2n - 2 đều chia hết cho n - 1
3) Ta có : 5n - 1 chia hết chi n - 2
=> 5n - 10 + 9 chia hết chi n - 2
=> 5(n - 2) + 9 chia hết chi n - 2
=> n - 2 thuộc Ư(9) = {1;3;9}
Ta có bảng :
n - 2 | 1 | 3 | 9 |
n | 3 | 5 | 11 |
1) Ta có : 2n + 3 chia hết cho 3n + 1
<=> 6n + 9 chia hết cho 3n + 1
<=> 6n + 2 + 7 chia hết cho 3n + 1
=> 7 chia hết cho 3n + 1
=> 3n + 1 thuộc Ư(7) = {1;7}
Ta có bảng :
3n + 1 | 1 | 7 |
3n | 0 | 6 |
n | 0 | 2 |
Vậy n thuộc {0;2}
Tìm n thuộc N, biết:
1) 2n+3 chia hết 3n+1
2)2n-2 chia hết cho n-1
3) 5n-1 chia hết cho n-2
4)3n+1 chia hết cho 2n+2
5)2n-1 chia hết cho 5n-3
6)n-3 chia hết cho n+4
7) 3n+3 chia hết cho n+2
8)4n chia hết cho n-3
9)5n+1 chia hết cho n+3
10)2n-2 chia hết cho n+3
Ta có n-3=n+4-7
6)=>n-4+7 chia hết cho n+4
=>7 chia hết cho n+4
=> n+4 thuộc Ư(7)
=> n+4 thuộc {1, -1,7,-7}
=> n thuộc {-3,-5,3,-11}
cm:a(a^2-1) chia hết cho 6 (a thuộc z)
\(a\left(a^2-1\right)=\left(a-1\right)\cdot a\cdot\left(a+1\right)\)
Vì a-1;a;a+1 là ba số nguyên liên tiếp
nên \(\left(a-1\right)\cdot a\cdot\left(a+1\right)⋮3!=6\)
Cho 10^n - 1 chia hết cho 11 . vậy CM: 10^2n - 1 + 1 chia hết cho 11
Cho A = (n -1) (n-1) (n2-1)(n thuộc Z )1) CM:A chia hết 3
Nếu n chia hết cho 3 => n^2 chia hết cho 3 => A không chia hết cho 3
nếu A chia hết cho 3 dư 1 => n-1 chia hết cho A => A chia hết cho 3
Nếu n :3 dư 2 => n+1 chia hết cho 3 => a chia hết cho 3
Vậy A chia hết cho 3 với mọi n