Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyenthingochan
Xem chi tiết
Xem chi tiết
Nguyễn Linh Chi
26 tháng 5 2020 lúc 1:29

a)

+) Với m = 0  thay vào phương trình ta có: 1 = 0 => loại 

+) Với m khác 0 

\(\Delta'=m^2-m=m\left(m-1\right)\)

Để phương trình có nghiệm điều kiện là: \(m\left(m-1\right)\ge0\)

TH1: m \(\ge\)0 và m - 1 \(\ge\)

<=> m \(\ge\) 0 và m \(\ge\)

<=> m \(\ge\)

 TH2: m \(\le\) 0 và m - 1  \(\le\)

<=> m \(\le\)0 và m \(\le\)1

<=> m \(\le\)

Đối chiếu điều kiên m khác 0

Vậy m < 0 hoặc m \(\ge\)1

+) Tính nghiệm của phương trình theo m. Tự làm áp dụng công thức

b) Gọi \(x_1;x_2\) là hai nghiệm của phương trình 

Theo định lí vi ét ta có: 

\(x_1x_2=\frac{1}{m};x_1+x_2=\frac{2m}{m}=2\)

Không mất tính tổng quát ta g/s: \(x_1=2x_2\)

=> \(3x_2=2\Leftrightarrow x_2=\frac{2}{3}\)=> \(x_1=\frac{4}{3}\)

Ta có: \(\frac{4}{3}.\frac{2}{3}=\frac{1}{m}\)

<=> \(m=\frac{9}{8}\)( thỏa mãn a )

Thử lại thỏa mãn 

Vậy m = 9/8

Khách vãng lai đã xóa
Phương Đỗ
Xem chi tiết
Hoàng Thị Lan Hương
4 tháng 8 2017 lúc 9:22

1.Ta có \(\Delta=4m^2-4\left(m^2-m-3\right)=4m+12\)

Để phương trình có 2 nghiệm phân biệt \(\Rightarrow\Delta>0\Rightarrow4m+12>0\Rightarrow m>-3\)

Theo hệ thức Viet ta có \(\hept{\begin{cases}x_1+x_2=2m\\x_1.x_2=m^2-m-3\end{cases}}\)

a. Phương trình có 2 nghiệm trái dấu \(\Rightarrow x_1.x_2< 0\Rightarrow m^2-m-3< 0\Rightarrow\frac{1-\sqrt{13}}{2}< m< \frac{1+\sqrt{13}}{2}\)

Vậy \(\frac{1-\sqrt{13}}{2}< m< \frac{1+\sqrt{13}}{2}\)

b. Phương trình có 2 nghiệm phân biệt dương \(\Leftrightarrow\hept{\begin{cases}x_1+x_2=2m>0\\x_1.x_2=m^2-m-3>0\end{cases}\Leftrightarrow\hept{\begin{cases}m>0\\m< \frac{1-\sqrt{13}}{2}\end{cases}\left(l\right);\hept{\begin{cases}m>0\\m>\frac{1+\sqrt{13}}{2}\end{cases}\Leftrightarrow m>\frac{1+\sqrt{13}}{2}}}}\)

Vậy \(m>\frac{1+\sqrt{13}}{2}\)

2. a.Ta có \(\Delta=\left(2m-1\right)^2+4m=4m^2-4m+1+4m=4m^2+1\)

Ta thấy \(\Delta=4m^2+1>0\forall m\)

Vậy phương trình luôn có 2 nghiejm phân biệt với mọi m

b. Theo hệ thức Viet ta có \(\hept{\begin{cases}x_1+x_2=1-2m\\x_1.x_2=-m\end{cases}}\)

Để \(x_1-x_2=1\Leftrightarrow\left(x_1-x_2\right)^2=1\Leftrightarrow\left(x_1+x2\right)^2-4x_1x_2=1\)

\(\Leftrightarrow\left(1-2m\right)^2-4.\left(-m\right)=1\Leftrightarrow4m^2-4m+1+4m=1\)

\(\Leftrightarrow m^2=0\Leftrightarrow m=0\)

Vậy \(m=0\)thoă mãn yêu cầu bài toán 

  

chanh
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 5 2022 lúc 13:03

undefined

Vãn Ninh 4.0
Xem chi tiết
Trần Tuấn Hoàng
21 tháng 4 2023 lúc 16:17

- Gọi \(x_1\) là một nghiệm của phương trình (1). Khi đó ta có:

\(x_1^2-2mx_1+4m=0\left(1'\right)\).

Vì phương trình (2) có một nghiệm bằng 2 lần nghiệm của phương trình (1) nên \(2x_1\) là một nghiệm của phương trình (2). Do đó:

\(\left(2x_1\right)^2-m.\left(2x_1\right)+10m=0\)

\(\Rightarrow4x_1^2-2mx_1+10m=0\left(2'\right)\)

Thực hiện phép tính \(4.\left(1'\right)-\left(2'\right)\) vế theo vế ta được:

\(4x_1^2-8mx_1+16m-\left(4x_1^2-2mx_1+10m\right)=0\)

\(\Rightarrow-6mx_1+6m=0\)

\(\Rightarrow6m\left(-x_1+1\right)=0\Rightarrow\left[{}\begin{matrix}m=0\\x_1=1\end{matrix}\right.\)

*Với \(x_1=1\). Vì \(x_1=1\) là 1 nghiệm của phương trình (1) nên:

\(1^2-2m.1+4m=0\Leftrightarrow m=-\dfrac{1}{2}\)

Thử lại ta có \(m=0\) hay \(m=-\dfrac{1}{2}\).

Xxyukitsune _the_moonwol...
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 3 2022 lúc 21:49

a: Thay x=-3 vào pt, ta được:

9+6m+2m+1=0

=>8m+10=0

hay m=-5/4

b: \(\text{Δ}=\left(-2m\right)^2-4\left(2m+1\right)\)

\(=4m^2-8m-4\)

\(=4\left(m-2\right)\left(m+1\right)\)

Để phương trình có hai nghiệm thì (m-2)(m+1)>=0

=>m>=2 hoặc m<=-1

c: Theo đề, ta có: \(\left(x_1+x_2\right)^2-2x_1x_2+2x_1x_2=16\)

\(\Leftrightarrow\left(2m\right)^2=16\)

=>2m=4 hoặc 2m=-4

=>m=2(nhận) hoặc m=-2(nhận)

Lam Vu
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 1 2022 lúc 16:32

\(\text{Δ}=\left(-2m\right)^2-4\left(m-1\right)\left(m+1\right)\)

\(=4m^2-4m^2+4=4\)

Vì Δ>0 nên phương trình luôn có hai nghiệm phân biệt 

Theo đề, ta có:

\(\left\{{}\begin{matrix}x_1-2x_2=0\\x_1+x_2=\dfrac{2m}{m-1}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x_2=\dfrac{2m}{m-1}\\x_1=2x_2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{2m}{3m-3}\\x_1=\dfrac{4m}{3m-3}\end{matrix}\right.\)

Theo đề, ta có: \(x_1\cdot x_2=\dfrac{m+1}{m-1}\)

\(\Leftrightarrow\dfrac{8m^2}{9\left(m-1\right)^2}=\dfrac{m+1}{m-1}\)

\(\Leftrightarrow8m^2=9\left(m+1\right)\left(m-1\right)\)

\(\Leftrightarrow9m^2-9-8m^2=0\)

hay \(m\in\left\{3;-3\right\}\)

Xxyukitsune _the_moonwol...
Xem chi tiết
Nguyễn Huy Tú
4 tháng 3 2022 lúc 16:38

a,để pt có nghiệm kép 

 \(\Delta=m^2-\left(m^2-m+1\right)=m-1=0\Leftrightarrow m=1\)

\(x_1=x_2=\dfrac{2m}{2}=m=1\)

b, để pt có nghiệm \(m\ge1\)

c, Ta có \(\left(x_1+x_2\right)^2-4x_1x_2=6\)

Thay vào ta đc \(4m^2-4\left(m^2-m+1\right)=6\)

\(\Leftrightarrow4m=10\Leftrightarrow m=\dfrac{5}{2}\left(tm\right)\)

Nguyễn Thị Huệ
Xem chi tiết
phamthithanhvi
2 tháng 5 2016 lúc 9:31

kh biết