Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Tú Uyên
Xem chi tiết
Biển Ác Ma
1 tháng 8 2019 lúc 20:46

\(A=\frac{5x+9}{x+1}=\frac{5x+5+4}{x+1}\)\(ĐKXĐ:x\ne-1\)

\(=\frac{5x+5}{x+1}+\frac{4}{x+1}\)

\(=\frac{5\left(x+1\right)}{x+1}+\frac{4}{x+1}\)

\(=5+\frac{4}{x+1}\)

\(\Rightarrow A=5+\frac{4}{x+1}\)

Để \(A\in Z\Rightarrow5+\frac{4}{x+1}\in Z\)

\(\Rightarrow x+1\inƯ\left(4\right)=\left\{1;2;4;-1;-2;-4\right\}\)

\(\Rightarrow x=\left\{0;1;3;-2;-3;-5\right\}\)

Mạc Hoa Nhi
Xem chi tiết
Trang Nguyễn
19 tháng 5 2021 lúc 10:22

a) Ta có: \(M=\dfrac{8x+1}{4x-5}=\dfrac{8x-10+11}{4x-5}=\dfrac{2\left(x-5\right)+11}{4x-5}=2+\dfrac{11}{4x-5}\)

Để M nhận giá trị nguyên thì \(2+\dfrac{11}{4x-5}\) nhận giá trị nguyên

\(\Rightarrow\dfrac{11}{4x-5}\) nhận giá trị nguyên

\(\Rightarrow11⋮4x-5\)

Vì \(x\in Z\) nên \(4x-5\in Z\)

\(\Rightarrow4x-5\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)

\(\Rightarrow x\in\left\{1;\pm1,5;4\right\}\)

Vậy \(x\in\left\{1;4\right\}\) thỏa mãn \(x\in Z\).

b) Ta có: \(A=\dfrac{5}{4-x}\). ĐK: \(x\ne4\)

Nếu 4 - x < 0 thì x > 4 \(\Rightarrow A>0\)

       4 - x > 0 thì x < 4 \(\Rightarrow A< 0\)

Để A đạt GTLN thì 4 - x là số nguyên dương nhỏ nhất

\(\Rightarrow4-x=1\Rightarrow x=3\)

\(\Rightarrow A=\dfrac{5}{4-3}=5\)

Vậy MaxA = 5 tại x = 3

c) \(B=\dfrac{8-x}{x-3}\). ĐK: \(x\ne3\).

Ta có: \(B=\dfrac{8-x}{x-3}=\dfrac{-\left(x-8\right)}{x-3}=\dfrac{-\left(x-3\right)+5}{x-3}=\dfrac{5}{x-3}-1\)

Để B đạt giá trị nhỏ nhất thì \(\dfrac{5}{x-3}-1\) nhỏ nhất

\(\Rightarrow\dfrac{5}{x-3}\) nhỏ nhất

Nếu x - 3 > 0 thì x > 3 \(\Rightarrow\dfrac{5}{x-3}>0\) 

       x - 3 < 0 thì x < 3 \(\Rightarrow\dfrac{5}{x-3}< 0\)

Để \(\dfrac{5}{x-3}\) nhỏ nhất thì x - 3 là số nguyên âm lớn nhất

\(\Rightarrow x-3=-1\Rightarrow x=2\)

\(\Rightarrow B=\dfrac{8-2}{2-3}=-6\)

Vậy MaxB = -6 tại x = 2.

Nguyễn Lê Phước Thịnh
19 tháng 5 2021 lúc 10:53

a) Để M nhận giá trị nguyên thì \(8x+1⋮4x-1\)

\(\Leftrightarrow8x-2+3⋮4x-1\)

mà \(8x-2⋮4x-1\)

nên \(3⋮4x-1\)

\(\Leftrightarrow4x-1\inƯ\left(3\right)\)

\(\Leftrightarrow4x-1\in\left\{1;-1;3;-3\right\}\)

\(\Leftrightarrow4x\in\left\{2;0;4;-2\right\}\)

\(\Leftrightarrow x\in\left\{\dfrac{1}{2};0;1;-\dfrac{1}{2}\right\}\)

mà x là số nguyên

nên \(x\in\left\{0;1\right\}\)

Vậy: \(x\in\left\{0;1\right\}\)

karipham
Xem chi tiết
Trần Việt Anh
11 tháng 3 2019 lúc 20:19

Đặt A = 4x^3 - 6x^2 + 8x và B = 2x -1
4x^3-6x^2+8x=(2x-1)(2x^2-2x+3)+3
để a chia hết cho b =>3 chia hết cho 2x-1
=>2x-1 thuộc Ư(3)=(1;-1;3;-3)
+2x-1=1=>x=1
+2x-1=-1=>x=0
+2x-1=3=>x=2
+2x+1=-3=>x=-2

Anh Quốc
Xem chi tiết
Tuấn Nguyễn
18 tháng 11 2018 lúc 10:38

Điều kiện: \(x\ne2\)

Phân tích tử thức: \(x^4-16=\left(x^2\right)^2-4^2=\left(x^2-4\right)\left(x^2+4\right)=\left(x-2\right)\left(x+2\right)\left(x^2+4\right)\)

Phân tích mẫu thức: \(x^4-4x^3+8x^2-16x+16=\left(x^4-4x^3+4x^2\right)+\left(4x^2-16x+16\right)\)

\(=x^2\left(x^2-4x+4\right)+4\left(x^2-4x+4\right)=\left(x-2\right)^2\left(x^2+4\right)\)

Ta có: \(P=\frac{\left(x-2\right)\left(x+2\right)\left(x^2+4\right)}{\left(x-2\right)^2\left(x^2+4\right)}=\frac{x+2}{x-2}=\frac{\left(x-2\right)+4}{x-2}=1+\frac{4}{x-2}\)

Để P là số nguyên thì \(x-2\inƯ\left(4\right)\)

\(\Rightarrow x-2\in\left\{-4;-2;-1;1;2;4\right\}\)

\(\Rightarrow x\in\left\{-2;0;1;3;4;6\right\}\)

Bùi Tiến Dũng
19 tháng 12 2018 lúc 18:58

Điều kiện: x\ne2x̸​=2

Phân tích tử thức: x^4-16=\left(x^2\right)^2-4^2=\left(x^2-4\right)\left(x^2+4\right)=\left(x-2\right)\left(x+2\right)\left(x^2+4\right)x4−16=(x2)2−42=(x2−4)(x2+4)=(x−2)(x+2)(x2+4)

Phân tích mẫu thức: x^4-4x^3+8x^2-16x+16=\left(x^4-4x^3+4x^2\right)+\left(4x^2-16x+16\right)x4−4x3+8x2−16x+16=(x4−4x3+4x2)+(4x2−16x+16)

=x^2\left(x^2-4x+4\right)+4\left(x^2-4x+4\right)=\left(x-2\right)^2\left(x^2+4\right)=x2(x2−4x+4)+4(x2−4x+4)=(x−2)2(x2+4)

Ta có: P=\frac{\left(x-2\right)\left(x+2\right)\left(x^2+4\right)}{\left(x-2\right)^2\left(x^2+4\right)}=\frac{x+2}{x-2}=\frac{\left(x-2\right)+4}{x-2}=1+\frac{4}{x-2}P=(x−2)2(x2+4)(x−2)(x+2)(x2+4)​=x−2x+2​=x−2(x−2)+4​=1+x−24​

Để P là số nguyên thì x-2\inƯ\left(4\right)x−2∈Ư(4)

\Rightarrow x-2\in\left\{-4;-2;-1;1;2;4\right\}⇒x−2∈{−4;−2;−1;1;2;4}

\Rightarrow x\in\left\{-2;0;1;3;4;6\right\}⇒x∈{−2;0;1;3;4;6}

Đinh Cẩm Tú
Xem chi tiết
Hoàng Kiệt
Xem chi tiết
Veoo
Xem chi tiết
Vũ Minh Anh
Xem chi tiết
Đinh Đức Hùng
27 tháng 1 2017 lúc 18:39

\(M=\frac{8x+1}{4x-1}=\frac{8x-2+3}{4x-1}=\frac{2\left(4x-1\right)+3}{4x-1}=2+\frac{3}{4x-1}\)

Để \(2+\frac{3}{4x-1}\) là số nguyên <=> \(\frac{3}{4x-1}\) là số nguyên

=> 4x - 1 ∈ Ư(3) = { - 3; - 1; 1 ; 3 }

4x - 1- 3- 1   1     3    
x- 1/2 01/2

Mà x nguyên => x = { 0; 1 }

Vũ Minh Anh
27 tháng 1 2017 lúc 21:03

cảm ơn nhìu nha

Nguyễn Trần Linh Na
Xem chi tiết
Lê Tài Bảo Châu
17 tháng 7 2019 lúc 14:31

Để phân số có giá trị là 1 số nguyen

\(\Leftrightarrow4x-6⋮2x+1\)

\(\Leftrightarrow2.\left(2x+1\right)-8⋮2x+1\)

Mà \(2.\left(2x+1\right)⋮2x+1\)

\(\Rightarrow8⋮2x+1\)

\(\Rightarrow2x+1\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4\pm8\right\}\)

Em tìm x rồi thay vào phân số H ra giá trị nguyên nhé.