phân tích thành nhân tử
a) 4x*(x+y)*(x+y+z)*(x+z)+y^2+z^2
b) x^3-19x-30
Bài 1: Phân tích các đa thức sau thành nhân tử
a/ x^2 - x - y^2 - y / e/ 4x^2 - y^2 +4x +1
b/ x^2 - 2xy +y^2 -z^2 / f/ x^3 - x + y^3 - y
c/ 5x- 5y +ax+ ay Giúp mình với ạ
d/ a^3 - a^2. x - ay + xy
a,x^2-x-y^2-y
=x^2-y^2-(x+y)
=(x-y).(x+y)-(x+y)
=(x+y).(x-y-1)
b, x^2-2xy+y^2-z^2
=(x^2-2xy+y^2)-z^2
=(x-y)^2-z^2
=(x-y-z)(x-y+z)
c,5x-5y+ax-ay( đề bài ở đây phải là -ay ms tính đc)
=(5x-5y)+(ax-ay)
=5(x-y)+a(x-y)
=(x-y).(5+a)
d,a^3-a^2.x-ay+xy
=(a^3-a^2x)-(ay-xy)
=a^2(a-x)-y(a-x)
=(a-x)(a^2-y)
e,4x^2-y^2+4x+1
={(2x)^2+4x+1}-y^2
=(2x+1)^2-y^2
=(2x+1+y^2)(2x+1-y^2)
f,x^3-x+y^3-y
=(x^3+y^3)-(x+y)
=(x+y)(x^2-xy+y^2)-(x+y)
=(x+y)(x^2-xy+y^2-1)
Phân tích các đa thức sau thành nhân tử
a,2x2+3xy-14y2
b,(x-7)(x-5)(x-3)(x-1)+7
c,(x-3)2+(x-3)(3x-1)-2(3x-1)2
d,xy(x-y)+yz(y-z)+zx(z-x)
f,x(y+z)2+y(z+x)2+z(x+y)2-4xyz
a: \(2x^2+3xy-14y^2\)
\(=2x^2+7xy-4xy-14y^2\)
\(=\left(2x^2+7xy\right)-\left(4xy+14y^2\right)\)
\(=x\left(2x+7y\right)-2y\left(2x+7y\right)\)
\(=\left(2x+7y\right)\left(x-2y\right)\)
b: \(\left(x-7\right)\left(x-5\right)\left(x-3\right)\left(x-1\right)+7\)
\(=\left(x-7\right)\left(x-1\right)\left(x-5\right)\left(x-3\right)+7\)
\(=\left(x^2-8x+7\right)\left(x^2-8x+15\right)+7\)
\(=\left(x^2-8x\right)^2+15\left(x^2-8x\right)+7\left(x^2-8x\right)+105+7\)
\(=\left(x^2-8x\right)^2+22\left(x^2-8x\right)+112\)
\(=\left(x^2-8x\right)^2+8\left(x^2-8x\right)+14\left(x^2-8x\right)+112\)
\(=\left(x^2-8x\right)\left(x^2-8x+8\right)+14\left(x^2-8x+8\right)\)
\(=\left(x^2-8x+8\right)\left(x^2-8x+14\right)\)
c: \(\left(x-3\right)^2+\left(x-3\right)\left(3x-1\right)-2\left(3x-1\right)^2\)
\(=\left(x-3\right)^2+2\left(x-3\right)\left(3x-1\right)-\left(x-3\right)\left(3x-1\right)-2\left(3x-1\right)^2\)
\(=\left(x-3\right)\left[\left(x-3\right)+2\left(3x-1\right)\right]-\left(3x-1\right)\left[\left(x-3\right)+2\left(3x-1\right)\right]\)
\(=\left(x-3+6x-2\right)\left(x-3-3x+1\right)\)
\(=\left(7x-5\right)\left(-2x-2\right)\)
\(=-2\left(x+1\right)\left(7x-5\right)\)
d: \(xy\left(x-y\right)+yz\left(y-z\right)+zx\left(z-x\right)\)
\(=x^2y-xy^2+y^2z-yz^2+zx\left(z-x\right)\)
\(=\left(x^2y-yz^2\right)-\left(xy^2-y^2z\right)+xz\left(z-x\right)\)
\(=y\left(x^2-z^2\right)-y^2\left(x-z\right)-xz\left(x-z\right)\)
\(=y\cdot\left(x-z\right)\left(x+z\right)-\left(x-z\right)\left(y^2+xz\right)\)
\(=\left(x-z\right)\left(xy+zy-y^2-xz\right)\)
\(=\left(x-z\right)\left[\left(xy-y^2\right)+\left(zy-zx\right)\right]\)
\(=\left(x-z\right)\left[y\cdot\left(x-y\right)-z\left(x-y\right)\right]\)
\(=\left(x-z\right)\left(x-y\right)\left(y-z\right)\)
phân tích đa thức thành nhân tử
a, ( x - 3)^2 - ( 5 - 2x )^2 = 0
b, ( x+ y )^2 - x + 4xy - 4y^2
c, ( x+y )^3 - ( x - y )^3
d, x^3 + y^3 + z^3 - 3xyz
\(a,\Rightarrow\left(x-3-5+2x\right)\left(x-3+5-2x\right)=0\\ \Rightarrow\left(3x-8\right)\left(2-x\right)=0\Rightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{8}{3}\end{matrix}\right.\\ b,=\left(x+y\right)^2-\left(x-2y\right)^2\\ =\left(x+y-x+2y\right)\left(x+y+x-2y\right)=3y\left(2x-y\right)\\ c,=\left(x+y-x+y\right)\left(x^2+2xy+y^2+x^2-y^2+x^2-2xy+y^2\right)\\ =2y\left(3x^2+y^2\right)\\ d,=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\\ =\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2\right)-3xy\left(x+y+z\right)\\ =\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)
1.Đa thức 4x(2y-z) +7y(2y-z) được phân tích thành nhân tử là :
A .(2y+z)(4x+7y)
B.(2y-z)(4x-7y)
C.(2y+z)(4x-7y)
D. (2y-z)(4x+7y)
2 Phân tích đa thức x2+3x+xy+3y thành nhân tử ta được :
A. (x+3)(y+3)
B. (x-y)(x+3)
C. (x+3)(x+y)
D. Cả 3 đều sai
bài 5 phân tích thành nhân tử
a)\(x^2-x-y^2-y\)
b)\(a^2-2xy+y^2-z^2\)
a) \(x^2-x-y^2-y=\left(x^2-y^2\right)-\left(x+y\right)=\left(x-y\right)\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(x-y-1\right)\)
x2−x−y2−y=(x2−y2)−(x+y)=(x−y)(x+y)−(x+y)=(x+y)(x−y−1)
a: \(x^2-y^2-x-y\)
\(=\left(x-y\right)\left(x+y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y-1\right)\)
b: \(x^2-2xy+y^2-z^2\)
\(=\left(x-y\right)^2-z^2\)
\(=\left(x-y-z\right)\left(x-y+z\right)\)
Phân tích đa thức thành nhân tử
a) xyz - (xy + yz + xz) + x + y + z - 1
b) x^3 - x^2y - xy^2 + y^3
Giúp mk vs ạ
b) Ta có: \(x^3-x^2y-xy^2+y^3\)
\(=\left(x^3+y^3\right)-\left(x^2y+xy^2\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)-xy\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-2xy+y^2\right)\)
\(=\left(x+y\right)\left(x-y\right)^2\)
phân tích đa thức thành nhân tử
a,A=x3+y3+z3-3xyz
b,B=(x+y)3+(y-z)3+(z-x)3
c,C=(x2+x+1) (x2+x+2)-12
d,D=bc(b+c)+ac(c-a)-ab(a+b)
a: =(x+y)^3+z^3-3xy(x+y)-3xyz
\(=\left(x+y+z\right)\left[\left(x+y\right)^2-z\left(x+y\right)+z^2\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)\)
b: \(=\left(x+y+y-z\right)^3-3\left(x+y\right)\left(y-z\right)\left(x+y+y-z\right)+\left(z-x\right)^3\)
\(=\left(x-z\right)^3+\left(z-x\right)^3-3\left(x+y\right)\left(y-z\right)\left(x-z\right)\)
\(=-3\left(x+y\right)\left(y-z\right)\left(x-z\right)\)
c: \(=\left(x^2+x\right)^2+3\left(x^2+x\right)+2-12\)
\(=\left(x^2+x\right)^2+3\left(x^2+x\right)-10\)
=(x^2+x+5)(x^2+x-2)
=(x^2+x+5)(x+2)(x-1)
d: =b^2c+bc^2+ac^2-a^2c-a^2b-ab^2
=b^2c-b^2a+bc^2-a^2b+ac^2-a^2c
=b^2(c-a)+b(c^2-a^2)+ac(c-a)
=(c-a)(b^2+ac)+b(c-a)(c+a)
=(c-a)(b^2+ac+bc+ba)
=(c-a)[b^2+bc+ac+ab]
=(c-a)[b(b+c)+a(b+c)]
=(c-a)(b+c)(b+a)
Phân tích các đa thức sau thành nhân tử:
1, x3 - 19x - 30
2, x3 - 7x - 6
3, x3 +4x2 - 7x - 10
4, yz (y + z) + zx (z - x) - xy (x + y)
5, x2y2 (y - x) + y2z2 (z - y) - x2z2 (z - x)
6, x (y + z)2 + y (z+x)2 + z (x+y)2 - 4xyz
Các bạn giải chi tiết giúp mình nhé (ai giải ok thì like). Cảm ơn các bạn nhiều!
1)x(x2 - 19 - 30)
2)x(x2 - 7 - 6)
3)x(x2 + 4x - 7 - 10)
( 4 tích mình làm tiếp 3 câu cuối)
bài 1: phân tích đa thức thành nhân tử
a)x^2-y^2+2x+1
b)(x+9)^2-36x^2
c)x^2-2xy+y^2-z^2+2zt-t^2
d)x^3-3x^2+3x+1-y^3
a)\(=\left(x^2+2x+1\right)-y^2=\left(x+1\right)^2-y^2=\left(x+1+y\right)\left(x+1-y\right)\)
b)\(=\left(x+9\right)^2-\left(6x\right)^2=\left(x+9-6x\right)\left(x+9+6x\right)=\left(-5x+9\right)\left(7x+9\right)\)
c)\(=\left(x^2-2xy+y^2\right)-\left(z^2-2zt+t^2\right)=\left(x-y\right)^2-\left(z-t\right)^2\\ =\left(x-y+z-t\right)\left(x-y-z+t\right)\)