Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Thành An
Xem chi tiết
Nyatmax
30 tháng 11 2019 lúc 19:12

Ta co:

\(\frac{1}{a+b^2}+\frac{1}{a^2+b}=\frac{1}{\frac{a^2}{a}+b^2}+\frac{1}{a^2+\frac{b^2}{b}}\ge\frac{1}{\frac{\left(a+b\right)^2}{a+1}}+\text{ }\frac{1}{\frac{\left(a+b\right)^2}{b+1}}=\frac{a+b+2}{\left(a+b\right)^2}\)

Ta di chung minh:

\(\frac{a+b+2}{\left(a+b\right)^2}\le1\)

Dat \(t=a+b\left(t\ge2\right)\)

BDT can chung minh la:

\(\frac{t+2}{t^2}\le1\)

\(\Leftrightarrow\left(t-2\right)\left(t+1\right)\ge0\left(True\right)\)

Dau '=' xay ra khi \(a=b=1\)

Khách vãng lai đã xóa
Nguyễn Phương Thảo
30 tháng 11 2019 lúc 19:35

Ta có:\(\frac{1}{a+b^2}\le\frac{1}{2b\sqrt{a}}\)( áp dụng bất đẳng thức coossi cho a và b^2 rồi nghịch đảo)

\(\frac{1}{b^2+a}\le\frac{1}{2b\sqrt{a}}\)

Do đó: \(\frac{1}{a+b^2}+\frac{1}{b+a^2}\le\frac{1}{2b\sqrt{a}}+\frac{1}{2a\sqrt{b}}\)

\(=\frac{\sqrt{a}+\sqrt{b}}{2ab}=\frac{\sqrt{a}.1+\sqrt{b}.1}{2ab}\)

\(\le\frac{\frac{a+1}{2}+\frac{b+1}{2}}{2ab}=\frac{a+b+2}{4ab}\)( áp dụng bất đẳng thức cosi cho \(\sqrt{a}.1\)và \(\sqrt{b}.1\))

\(\le\frac{a+b+2}{\left(a+b\right)^2}=\frac{a+b}{\left(a+b\right)^2}+\frac{2}{\left(a+b\right)^2}\)

\(=\frac{1}{a+b}+\frac{2}{\left(a+b\right)^2}\)

\(\le\frac{1}{2}+\frac{2}{4}=1\)( do a+b\(\ge\)2 nên \(\frac{1}{a+b}\le\frac{1}{2}\)và \(\left(a+b\right)^2\ge4\)nên  \(\frac{2}{\left(a+b\right)^2}\le\frac{2}{4}\))

Dấu bằng xảy ra khi và chỉ khi a=b=1

Khách vãng lai đã xóa
Nguyen Duc Huynh
Xem chi tiết
Nhã Doanh
21 tháng 4 2018 lúc 15:45

a.

Xét hiệu:

\(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)-4\)

\(=1+\dfrac{a}{b}+\dfrac{b}{a}+1-4\)

\(=\dfrac{a}{b}+\dfrac{b}{a}-2\)

\(=\dfrac{a^2+b^2-2ab}{ab}\)

\(=\dfrac{\left(a-b\right)^2}{ab}\ge0\) ( luôn đúng)

Suy ra:

\(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge4\)

Nhã Doanh
21 tháng 4 2018 lúc 15:58

b.

Đặt:

\(A=\)\(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

\(=1+\dfrac{a}{b}+\dfrac{a}{c}+\dfrac{b}{a}+1+\dfrac{b}{c}+\dfrac{c}{a}+\dfrac{c}{b}+1\)

\(=\left(\dfrac{a}{b}+\dfrac{b}{a}\right)+\left(\dfrac{a}{c}+\dfrac{c}{a}\right)+\left(\dfrac{b}{c}+\dfrac{c}{b}\right)+3\) (1)

Áp dụng BĐT Cauchy cho 2 số không âm, ta có:

\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{a}{b}.\dfrac{b}{a}}=2\) (2)

\(\dfrac{a}{c}+\dfrac{c}{a}\ge2\sqrt{\dfrac{a}{c}.\dfrac{c}{a}}=2\) (3)

\(\dfrac{b}{c}+\dfrac{c}{b}\ge2\sqrt{\dfrac{a}{c}.\dfrac{c}{a}}=2\) (4)

Từ (1)(2)(3)(4) cộng vế theo vế, ta được:

\(A\ge3+2+2+2=9\)

=> BĐT luôn đúng

=> \(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge9\)

Phạm Nguyễn Tất Đạt
21 tháng 4 2018 lúc 15:59

b)Đặt \(A=\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

\(A=1+\dfrac{a}{b}+\dfrac{a}{c}+\dfrac{b}{a}+1+\dfrac{b}{c}+\dfrac{c}{a}+\dfrac{c}{b}+1\)

\(A=3+\left(\dfrac{a}{b}+\dfrac{b}{a}\right)+\left(\dfrac{a}{c}+\dfrac{c}{a}\right)+\left(\dfrac{b}{c}+\dfrac{c}{b}\right)\)

Ta chứng minh bđt sau:\(\dfrac{x}{y}+\dfrac{y}{x}\ge2\)

\(\Leftrightarrow\dfrac{x^2+y^2}{xy}\ge2\)

\(\Leftrightarrow x^2+y^2\ge2xy\)

\(\Leftrightarrow\left(x-y\right)^2\ge0\)(luôn đúng)

Áp dụng\(\Rightarrow P\ge3+2+2+2=9\left(đpcm\right)\)

Minh Nguyễn Cao
Xem chi tiết
Hồ Văn Đạt
Xem chi tiết
zZz Cool Kid_new zZz
21 tháng 2 2020 lúc 20:03

\(\left(a+\frac{1}{b}\right)^2+\left(b+\frac{1}{a}\right)^2\)

\(\ge\frac{\left(a+b+\frac{1}{a}+\frac{1}{b}\right)^2}{2}\)

\(\ge\frac{\left(a+b+\frac{4}{a+b}\right)^2}{2}\)

\(=\frac{25}{2}\) 

tại a=b=1/2

Khách vãng lai đã xóa
Lê Tài Bảo Châu
21 tháng 2 2020 lúc 21:57

thêm ít cách

Cách 1:

Áp dụng BĐT bunhiacopxki ta được:

\(\left[\left(a+\frac{1}{b}\right)^2+\left(b+\frac{1}{a}\right)^2\right]\left(1^2+1^2\right)\ge\left[\left(a+\frac{1}{b}\right)+\left(b+\frac{1}{a}\right)\right]^2\)

\(\Leftrightarrow\left[\left(a+\frac{1}{b}\right)^2+\left(b+\frac{1}{a}\right)^2\right]2\ge\left(1+\frac{1}{a}+\frac{1}{b}\right)^2\)(1)

Ta có:\(\frac{1}{a}+\frac{1}{b}\ge\frac{2}{\sqrt{ab}}\)( tự CM nha )

ÁP dụng BĐT AM-GM ta có:

\(\sqrt{ab}\le\frac{a+b}{2}=\frac{1}{2}\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}\ge4\)(2)

Thay (2) vào (1) ta được: 

\(\left[\left(a+\frac{1}{b}\right)^2+\left(b+\frac{1}{a}\right)^2\right]2\ge25\)

\(\Rightarrow\left(a+\frac{1}{b}\right)^2+\left(b+\frac{1}{a}\right)^2\ge\frac{25}{2}\left(đpcm\right)\)

Dấu"="xảy ra \(\Leftrightarrow a=b=\frac{1}{2}\)

Cách 2: 

Đặt \(P=\left(a+\frac{1}{b}\right)^2+\left(b+\frac{1}{a}\right)^2\)

Ta có: \(\left(a+\frac{1}{b}\right)^2+\left(b+\frac{1}{a}\right)^2=a^2+\frac{2a}{b}+\frac{1}{b^2}+b^2+\frac{2b}{a}+\frac{1}{a^2}\)

\(=a^2+\frac{2a}{b}+\frac{1}{16b^2}+\frac{15}{16b^2}+b^2+\frac{2b}{a}+\frac{1}{16a^2}+\frac{15}{16a^2}\)

\(=\left(a^2+\frac{1}{16a^2}\right)+\left(b^2+\frac{1}{16b^2}\right)+\left(\frac{2a}{b}+\frac{2b}{a}\right)+\left(\frac{15}{16b^2}+\frac{15}{16a^2}\right)\)

ÁP dụng BĐT AM-GM ta có:

\(a^2+\frac{1}{16a^2}\ge2\sqrt{a^2.\frac{1}{16a^2}}\ge\frac{1}{2}\)(3)

\(b^2+\frac{1}{16b^2}\ge2\sqrt{b^2.\frac{1}{16b^2}}\ge\frac{1}{2}\)(4)

\(\frac{2a}{b}+\frac{2b}{a}\ge2\sqrt{\frac{2a}{b}.\frac{2b}{a}}\ge4\)(5)

\(\frac{15}{16a^2}+\frac{15}{16b^2}\ge2\sqrt{\frac{15.15}{16.16a^2b^2}}=\frac{15}{8ab}\)(1) 

ÁP dụng BĐT AM-GM ta có:

\(ab\le\frac{\left(a+b\right)^2}{4}=\frac{1}{4}\)(2)

Thay (2) vào (1) ta được:

\(\frac{15}{16a^2}+\frac{15}{16b^2}\ge\frac{15}{2}\)(6)

Cộng (3)+(4)+(5)+(6) ta được: 

\(P\ge\frac{1}{2}+\frac{1}{2}+\frac{15}{2}+4=\frac{25}{2}\)

Dấu"="xảy ra \(\Leftrightarrow a=b=\frac{1}{2}\)

Cách 3:Làm tắt thui ạ

Đặt \(P=\left(a+\frac{1}{b}\right)^2+\left(b+\frac{1}{a}\right)^2\)

\(\left(a+\frac{1}{b}\right)^2+\left(b+\frac{1}{a}\right)^2=a^2+\frac{2a}{b}+\frac{1}{b^2}+b^2+\frac{2b}{a}+\frac{1}{a^2}\ge2ab+\frac{2}{ab}+4\)

\(P\ge2\left(ab+\frac{1}{ab}\right)+4\)

\(P\ge2\left(ab+\frac{1}{16ab}+\frac{15}{16ab}\right)+4\)

giống cách 2 rồi làm nốt

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
11 tháng 2 2021 lúc 16:32

ÁP DỤNG BẤT ĐẲNG THỨC BUNYAKOVSKY DẠNG PHÂN THỨC TA CÓ : 

\(\left(A+\frac{1}{B}\right)^2+\left(B+\frac{1}{A}\right)^2\ge\frac{\left(A+\frac{1}{B}+B+\frac{1}{A}\right)^2}{2}=\frac{\left(1+\frac{1}{A}+\frac{1}{B}\right)^2}{2}\)(1)

LẠI CÓ \(\frac{1}{A}+\frac{1}{B}\ge\frac{4}{A+B}=\frac{4}{1}=4\)(2)

TỪ (1) VÀ (2) => \(\left(A+\frac{1}{B}\right)^2+\left(B+\frac{1}{A}\right)^2\ge\frac{\left(1+\frac{1}{A}+\frac{1}{B}\right)^2}{2}\ge\frac{\left(1+4\right)^2}{2}=\frac{25}{2}\)

=> \(\left(A+\frac{1}{B}\right)^2+\left(B+\frac{1}{A}\right)^2\ge\frac{25}{2}\)(ĐPCM)

ĐẲNG THỨC XẢY RA <=> A = B = 1/2

Khách vãng lai đã xóa
NguyenThu Ha
Xem chi tiết
yoyo2003ht
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
28 tháng 3 2021 lúc 10:26

xí câu 1:))

Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(\frac{x^2}{y-1}+\frac{y^2}{x-1}\ge\frac{\left(x+y\right)^2}{x+y-2}\)(1)

Đặt a = x + y - 2 => a > 0 ( vì x,y > 1 )

Khi đó \(\left(1\right)=\frac{\left(a+2\right)^2}{a}=\frac{a^2+4a+4}{a}=\left(a+\frac{4}{a}\right)+4\ge2\sqrt{a\cdot\frac{4}{a}}+4=8\)( AM-GM )

Vậy ta có đpcm

Đẳng thức xảy ra <=> a=2 => x=y=2

Khách vãng lai đã xóa
Thành VInh Nguyễn
Xem chi tiết
AKPD
Xem chi tiết
Minh Hiếu
30 tháng 3 2022 lúc 21:32

a) Áp dụng BĐT Svácxơ, ta có:

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{\left(1+1+1\right)^2}{a+b+c}=\dfrac{9}{6}=\dfrac{3}{2}\)

Dấu "=" \(\Leftrightarrow a=b=c=2\)

Minh Hiếu
30 tháng 3 2022 lúc 21:33

b) Áp dụng BĐT Svácxơ, ta có:

\(\dfrac{a^2}{c}+\dfrac{b^2}{a}+\dfrac{c^2}{b}\ge\dfrac{\left(a+b+c\right)^2}{a+b+c}=a+b+c=6\)

Dấu "=" \(\Leftrightarrow a=b=c=2\)

Nguyễn Văn Kiệt
Xem chi tiết
Nguyễn Hoàng Sơn
26 tháng 5 2020 lúc 21:23

tao loa

Khách vãng lai đã xóa