Tìm x,y,z
\(\frac{x}{y+z+1}=\frac{y}{x+z+1}=\frac{z}{x+y+1}=x+y+z\)
a) \(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)
b) \(\frac{x}{y+z+1}=\frac{y}{x+z+2}=\frac{z}{x+y-2}=x+y+z\)
Tìm x ;y;z
a) \(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{y+z+1+x+z+2+x+y-3}{x+y+z}=2\)
\(\Rightarrow x+y+z=\frac{1}{2}\)(do 1/(x+y+z)=2)
\(\Rightarrow y+z=\frac{1}{2}-x;z+x=\frac{1}{2}-y;x+y=\frac{1}{2}-z\)
Thay vào lần lượt ta có:
\(\frac{\frac{1}{2}-x+1}{x}=2\)\(\Rightarrow x=\frac{1}{2}\)
\(\frac{\frac{1}{2}-y+2}{y}=2\)\(\Rightarrow y=\frac{5}{6}\)
\(\frac{\frac{1}{2}-z-3}{z}=2\)\(\Rightarrow z=-\frac{5}{6}\)
Tìm x,y,z biết:
\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-z}{z}=\frac{1}{x+y+z}\)
y+x+z bằng bao nhiêu mới tính ra được chứ?? sai đề à??
Tìm x, y, z biết: \(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)
\(\frac{y+z+1+x+z+2+x+y-3}{x+y+z}\)=\(\frac{1}{x+y+z}\)
\(\frac{\left(y+z+x+z+x+y\right)+\left(1+2-3\right)}{x+y+z}\)=\(\frac{1}{x+y+z}\)
\(\frac{2x+2y+2x}{x+y+z}\)=\(\frac{1}{x+y+z}\)
2=\(\frac{1}{x+y+z}\)(1)
Từ(1) => \(\frac{1}{x+y+z}\)=2 => x+y+z=0,5=>x+z=0,5-y(2)
Từ(1)=> x+y+1=2x(3)
x+z+2=2y(4)
z+y-3=2z(5)
Thay(2) vào (4) ta được: 0,5-y+2=2y
=> 2,5=3y
=> y=\(\frac{5}{6}\)
Thay y=\(\frac{5}{6}\)vào(3) ta được:x+\(\frac{5}{6}\)+1=2x
\(\frac{11}{6}\)=x
Thay x=\(\frac{11}{6}\); y=\(\frac{5}{6}\)vào x+y+z=0,5 ta đươc:
\(\frac{11}{6}\)+\(\frac{5}{6}\)+z=0,5
z=\(\frac{-13}{6}\)
Vậy ............
chúc bn học tốt.
k cho mik nha
Tìm x;y;z biết:
a) \(\frac{y+z+1}{x}=\frac{y+x+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)
b) \(\frac{x}{y+z+1}=\frac{y}{z+x+1}=\frac{z}{x+y+1}=x+y+z\)
Chỉ cần làm phần b thoy cx đc !!!!!!
Cho x,y,z khác 0: x+y+z khác 0 và
\(\frac{x-y-z}{x}=\frac{-x+y-z}{y}=\frac{-x-y+z}{z}\)
Tìm \(A=\left(1+\frac{y}{x}\right)\left(1+\frac{z}{y}\right)\left(1+\frac{x}{z}\right)=?\)
\(\frac{y+z}{x}=\frac{x+z}{y}=\frac{x+y}{z}\Rightarrow k=2\Rightarrow x=y=z=1\)
A=6
\(\frac{x-y-z}{x}=1-\frac{y+z}{x}\) tương tự con khác
=> x=y=z
=> A=6
Tìm x,y,z biết: \(\frac{x}{z+y+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=x+y+z\)(x,y,z khác 0)
Dùng tính chất tỉ lệ thức:
x+y+z = 0\(\frac{x}{\left(y+z+1\right)}=\frac{y}{\left(x+z+1\right)}=\frac{z}{\left(x+y-2\right)}=0\Rightarrow x=y=z=0\)
Áp dụng tính chất tỉ lệ thức:
\(x+y+z=\frac{x}{\left(y+z+1\right)}=\frac{y}{\left(x+z+1\right)}=\frac{z}{\left(x+y-2\right)}=\left(\frac{x+y+z}{2x+2y+2z}\right)=\frac{1}{2}\)
=> x+y+z = \(\frac{1}{2}\)
+) \(2x=y+z+1=\frac{1}{2}-x+1\Rightarrow x=\frac{1}{2}\)
+) \(2y=x+z+1=\frac{1}{2}-y+1\Rightarrow y=\frac{1}{2}\)
+) \(z=\frac{1}{2}-\left(x+y\right)=\frac{1}{2}-1=\frac{-1}{2}\)
TA CÓ: \(\frac{x}{z+y+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=\frac{x+y+z}{z+y+1+x+z+1+x+y-2}=\frac{1.\left(x+y+z\right)}{\left(1+1-2\right)+2x+2y+2z}\)
\(=\frac{1.\left(x+y+z\right)}{0+2.\left(x+y+z\right)}=\frac{1.\left(x+y+z\right)}{2.\left(x+y+z\right)}=\frac{1}{2}\)
\(\Rightarrow x+y+z=\frac{1}{2}\)
\(\Rightarrow\frac{x}{z+y+1}=\frac{1}{2}\)\(\Rightarrow2x=z+y+1\)\(\Rightarrow3x=x+z+y+1\)\(\Rightarrow3x=\frac{1}{2}+1\Rightarrow3x=\frac{3}{2}\Rightarrow x=\frac{1}{2}\)
\(\frac{y}{x+z+1}=\frac{1}{2}\)\(\Rightarrow2y=x+z+1\Rightarrow3y=y+x+z+1\Rightarrow3y=\frac{1}{2}+1=\frac{3}{2}\Rightarrow y=\frac{1}{2}\)
\(\frac{z}{x+y-2}=\frac{1}{2}\)\(\Rightarrow2z=x+y-2\Rightarrow3z=x+y+z-2\Rightarrow3z=\frac{1}{2}-2=\frac{-3}{2}\Rightarrow z=\frac{-1}{2}\)
VẬY X= 1/2; Y= 1/2 ; Z= -1/2
CHÚC BN HỌC TỐT!!!!!!
tìm x,y,z biết : \(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)
Tìm x,y,z
\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)
Điều kiện \(\hept{\begin{cases}x\ne0\\y\ne0\\z\ne0\end{cases}}\)
ADTC dãy tỉ số bằng nhau ta có :
\(\frac{\left(y+z+1\right)}{x}=\frac{\left(x+z+2\right)}{y}=\frac{\left(x+y-3\right)}{z}=\downarrow\)
\(=\frac{\left(y+z+1+x+z+2+x+y-3\right)}{\left(x+y+z\right)}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)
\(\Rightarrow\frac{1}{\left(x+y+z\right)}=2\)
\(\Rightarrow x+y+z=\frac{1}{2}\Leftrightarrow y+z=\frac{1}{2}-x\)(1)
\(\frac{\left(y+z+1\right)}{x}=2\Leftrightarrow y+z+1=2x\)
Kết hợp với (1) \(\Rightarrow\frac{1}{2}-x+1=2x\)
\(\Leftrightarrow x=\frac{1}{2}\Rightarrow y+z=0\Leftrightarrow y=-z\)
Ta có : \(\frac{\left(x+y-3\right)}{z}=2\)
\(\Leftrightarrow x+y-3=2z\)
\(\Leftrightarrow y-2z=\frac{5}{2}\)
Do: \(y=-z\Rightarrow-3z=\frac{5}{2}\Leftrightarrow z=-\frac{5}{6}\)
\(\Rightarrow y=\frac{5}{6}\)
Vậy nghiệm tìm đc : \(\left(x;y;z\right)=\left(\frac{1}{2};\frac{5}{6};-\frac{5}{6}\right)\)
Đề:
Cho các số thực x, y, z thoả mãn x + y + z = 1 và \(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}=1\)
\(\left(x\ne-y;y\ne-z;z\ne-x\right)\)
Giá trị của biểu thức \(P=\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\) là . . .
Giải:
x + y + z = 1
=> x = 1 - (y + z)
y = 1 - (x + z)
z = 1 - (x + y)
Thay x = 1 - (y + z); y = 1 - (x + z) và z = 1 - (x + y) vào P, ta có:
\(P=\frac{x\left[1-\left(y+z\right)\right]}{y+z}+\frac{y\left[1-\left(x+z\right)\right]}{x+z}+\frac{z\left[1-\left(x+y\right)\right]}{x+y}\)
\(=\frac{x-x\left(y+z\right)}{y+z}+\frac{y-y\left(x+z\right)}{x+z}+\frac{z-z\left(x+y\right)}{x+y}\)
\(=\frac{x}{y+z}-\frac{x\left(y+z\right)}{y+z}+\frac{y}{x+z}-\frac{y\left(x+z\right)}{x+z}+\frac{z}{x+y}-\frac{z\left(x+y\right)}{x+y}\)
\(=\left(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\right)-\left(x+y+z\right)\)
\(=1-1\)
\(=0\)
ĐS: 0
Trịnh Trân Trân <3
Hay quớ ak! Mơn m nhìu nha ný! <3 <3 <3 (not thả thính =))))
Tìm x,y,z:
\(\frac{x}{z+y+1}=\frac{y}{z+x+1}=\frac{z}{x+y+1}\)= x+y+z
(x,y,z khác 0)
Áp dụng dãy tỉ số bằng nhau ta có:
\(\frac{x}{z+y+1}=\frac{y}{z+x+1}=\frac{z}{x+y+1}=x+y+z=\frac{x+y+z}{2\left(x+y+z\right)+3}\)
\(\Rightarrow\left(x+y+z\right)\left(1-\frac{1}{2\left(x+y+z\right)+3}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+y+z=0\\2\left(x+y+z\right)+3=1\end{cases}\Rightarrow\orbr{\begin{cases}x+y+z=0\\x+y+z=-1\end{cases}}}\)
Vậy mọi số x,y,z thỏa mãn \(\orbr{\begin{cases}x+y+z=0\\x+y+z=-1\end{cases}}\) đều thỏa mãn bài toán
sao ( x+y+x)(1-1/2(x+y+z)+3)= 0 ha ban.. mk thay cu sai sai... o cho 1-1/2(x+y+z)+3