Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nuyen Thanh Dang
Xem chi tiết
Phước Nguyễn
10 tháng 7 2016 lúc 22:26

  Đã xảy ra lỗi rồi. Bạn thông cảm vì sai sót này.

  Ta có:  

Áp dụng hệ quả của bất đẳng thức Cauchy cho ba số không âm 

   trong đó với     , ta có:

  

Tương tự, ta có:

       

Cộng ba bất đẳng thức     và   , ta được:

  

Khi đó, ta chỉ cần chứng minh

  

Thật vậy, bất đẳng thức cần chứng minh được quy về dạng sau:    (bất đẳng thức Cauchy cho ba số   )

Hay       

Mà    đã được chứng minh ở câu    nên    luôn đúng với mọi  

Dấu    xảy ra    

Vậy,       

 
Linh Nguyen
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 8 2020 lúc 16:51

Kẻ đường cao AH, do B và C là các góc nhọn nên H nằm giữa B và C

Trong tam giác vuông ABH: \(sinB=\frac{AH}{AB}\)

Trong tam giác vuông ACH: \(sinC=\frac{AH}{AC}\)

\(\Rightarrow\frac{sinB}{sinC}=\frac{AH}{AB}.\frac{AC}{AH}=\frac{AC}{AB}=\frac{1}{2}\)

thanh hoa
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
30 tháng 7 2018 lúc 16:32

Le Hong Phuc
Xem chi tiết
Le Hong Phuc
6 tháng 6 2018 lúc 18:23

ABCDEHcba

phan thị minh anh
Xem chi tiết
haphuong01
31 tháng 7 2016 lúc 9:38

Hỏi đáp Toán

Cuồng Song Joong Ki
Xem chi tiết
Trần Nhật Huy
31 tháng 7 2016 lúc 10:35

Từ A vẽ AD _|_ BC ,AG là trung tuyến cắt BC tại E\(\Rightarrow\)\(\hept{\begin{cases}AD\le AE\Rightarrow\frac{1}{AD}\ge\frac{1}{AE}\\1.2GE=BC\left(do\Delta BGCvuongcoElatrungdiem\right)\end{cases}}\)

cotB=\(\frac{BD}{AD}\)cotC=\(\frac{CD}{AD}\)\(\Rightarrow\)2.cotB + cotC=\(\frac{BC}{AD}\)

3.G là trực tâm nên 3GE=AE\(\Rightarrow\)\(\frac{1}{AD}\ge\frac{1}{3GE}\)

từ 1, 2 và 3 \(\Rightarrow\)cotB + cotC=\(\frac{BC}{AD}\ge\frac{2GE}{3GE}=\frac{2}{3}\)

Tuấn
31 tháng 7 2016 lúc 9:54

\(\cot B+\cot C=\frac{BD}{AD}+\frac{CD}{AD}=\frac{BC}{AD}=\frac{BC}{3GH}\ge\frac{2GH}{3GH}=\frac{2}{3}\)
VỚI D LÀ CHÂN ĐƯỜNG CAO HẠ TỪ A XUÔNG BC , G LÀ TRỌNG TÂM , H LÀ CHÂN ĐƯỜNG CAO HẠ TỪ G XUỐNG BC
B2 THÌ GIẢI BÌNH THƯỜNG =='. ĐỌC THÊM NCPT 9 NHÉ 

khong có
Xem chi tiết
KEM
Xem chi tiết