cho tam giác ABC, góc B, góc C nhọn. 2 đường cao BE và CF cắt ở điểm H
a) CM : AB.AF=AC.AE
b) CM: góc ACB + góc BFE =1800
c) CM: BH.BE+CH.CF=BC2
d) nếu góc BAC=600 và diện tích tam giác ABC=120 cm2. tính diện tích tam giác AEF
a) cho tam giác ABC . Chứng minh rằng : sin( B + C ) = sinA và cos \(\frac{A+B}{2}\) = sinC ; b) cho tam giác ABC có vector BA nhân vector BC = AB2 . Chứng minh rằng : tam giác ABC vuông ; c) chứng minh rằng : sin6a + cos6a + 3sin2acos2a = 1
cho tam giác ABC , góc B= 60 , AB= 6 cm, BC= 14 cm . trên BC lấy điểm D sao cho góc BAD = 60 độ . gọi H là trung điểm BD
a) tính độ dài HD
b) chứng minh rằng tam giác DAC can
c) tam giác ABC là tam giác gì ?
d) CMR : AB^2 + CH^2 = AC^2 + BH ^2
Cho tam giác ABC vuông tại A. Có góc B = 60 độ. Tia phân giác góc B cắt AC ở D. Kẻ KC vuông góc với tia BD ở K
a) Tính số đo hóc ABD, góc ACB?
b) CMR: AB=CK
c) Tam giác AKB = Tam giác KAC
d) BC = 2AB
Cho lăng trụ tam giác ABC.A'B'C' có đáy ABC là tam giác vuông tại C, BB' = a, góc B A C ^ = 60 ∘ , đường thẳng BB' tạo với (ABC) một góc 60 ∘ , Hình chiếu vuông góc của B' lên (ABC) trùng với trọng tâm của tam giác ABC. Thể tích V của khối tứ diện A'.ABC là:
A. 1 208 a 3 .
B. 18 208 a 3 .
C. 9 208 a 3 .
D. 27 208 a 3 .
Cho hình chóp tam giác S.ABC có S A = a ; S B = b ; S C = c và B S C ⏜ = 120 ° , C S A ⏜ = 90 ° , A S B ⏜ = 60 ° . Gọi G là trọng tâm của tam giác ABC. Độ dài đoạn SG bằng
A. 1 3 a 2 + b 2 + c 2 + a b + b c + c a
B. a 2 + b 2 + c 2 + a b - b c
C. 1 3 a 2 + b 2 + c 2 + a b - c a
D. 1 3 a 2 + b 2 + c 2 + a b - b c
cho tam giác ABC có 3 góc nhọn, (AB<AC) . vẽ về phía ngoài tam giác ABC các tam giác đều ABD;ACE .gọi I là giao điểm của CD và BE ; K là giao điểm của AB và DC.
a) CMR: tam giác ADC= tam giác ABE
b) chứng minh : góc DIB= 60 độ
c) gọi M và N lần lượt là trung điểm CD và DE .CMR : tam giác AMN đều
d) CMR : IA là tia phân giác của góc DIE
cho tam giác ABC có 3 góc nhọn, (AB<AC) . vẽ về phía ngoài tam giác ABC các tam giác đều ABD;ACE .gọi I là giao điểm của CD và BE ; K là giao điểm của AB và DC.
a) CMR: tam giác ADC= tam giác ABE
b) chứng minh : góc DIB= 60 độ
c) gọi M và N lần lượt là trung điểm CD và DE .CMR : tam giác AMN đều
d) CMR : IA là tia phân giác của góc DIE
Cho hình chóp SABC có đáy là tam giác vuông cân tại A, B C = a 2 , các tam giác SAB và SAC là tam giác đều. Tính Cô sin của góc giữa hai mặt phẳng (SAB) và (SAC).
A. 1 3
B. 1 5
C. 1 7
D. 3 8