Tìm các số x,y,z, biết rằng:
x20=y9=z6 và x−2y+4z=13
Bài 1. Tìm các số x, y, z, biết rằng 1. x/20 = y/9 = z/6 và x − 2y + 4z = 13; 2. x 3 = y 4 , y 5 = z 7 và 2x + 3y − z = 186. 3. x 2 = 2y 5 = 4z 7 và 3x + 5y + 7z = 123; 4. x 2 = 2y 3 = 3z 4 và xyz = −108.
Tìm các số hữu tỉ x, y, z biết: (2x-3y)/13=(2y-7z)/17=(3-4z)/11 và 2x+y-2z=23
Tìm x,y,z biết 6x 4z 5 2y 5x 6 5z 6y 4và 3x 2y 5z 96 tìm x,y,z biết 6x 4z 5 2y 5x 6 5z 6y 4 và 3x 2y
Tìm x,y,z biết:
Tìm x,y,z biết:
a) 7x-2y=5x-3y và 2x+3y=20
b) 2x=3y=4z-2y và x+y+z=45
c) 3x=4y-2x=7z-4y và x+y-2z=10
a.
$7x-2y=5x-3y$
$\Leftrightarrow 2x=-y$. Thay vào điều kiện số 2 ta có:
$-y+3y=20$
$2y=20$
$\Rightarrow y=10$.
$x=\frac{-y}{2}=\frac{-10}{2}=-5$
b.
$2x=3y\Rightarrow \frac{x}{3}=\frac{y}{2}$
$3y=4z-2y\Rightarrow 5y=4z\Rightarrow \frac{y}{4}=\frac{z}{5}$
$\Rightarrow \frac{x}{6}=\frac{y}{4}=\frac{z}{5}$
Áp dụng tính chất dãy tỉ số bằng nhau:
$\frac{x}{6}=\frac{y}{4}=\frac{z}{5}=\frac{x+y+z}{6+4+5}=\frac{45}{15}=3$
$\Rightarrow x=6.3=18; y=4.3=12; z=5.3=15$
c.
$3x=4y-2x$
$\Rightarrow 5x=4y\Rightarrow x=\frac{4}{5}y$
$3x=7z-4y$
$\Leftrightarrow \frac{12}{5}y=7z-4y$
$\Leftrightarrow \frac{32}{5}y=7z\Rightarrow z=\frac{32}{35}y$
Khi đó:
$x+y-2z=10$
$\frac{4}{5}y+y-2.\frac{32}{35}y=10$
$y.\frac{-1}{35}=10$
$y=-350$
$x=\frac{4}{5}y=\frac{4}{5}.(-350)=-280$
$z=\frac{32}{35}y=\frac{32}{35}.(-350)=-320$
CÁC BẠN GIÚP MÌNH VỚI:
TÌM X,Y,Z BIẾT: 2x/3=2y/4=4z/5 và x+y+z=49.
\(\frac{2x}{3}=\frac{2y}{4}=\frac{4z}{5}=\frac{2x+2y+4z}{3+4+5}=\frac{2\left(x+y+z\right)}{12}=\frac{98}{12}=\frac{49}{6}\)
=> x = 49/4
=> y = 49/3
=. z = 245/24
Tìm x,y,z biết \(\frac{x}{20}=\frac{y}{9}=\frac{z}{6}\); x - 2y + 4z = 13
\(\frac{x}{20}=\frac{y}{9}=\frac{z}{6}=\frac{2y}{18}=\frac{4z}{24}\)
Áp dụng dãy tỉ số bằng nhau ta có :
\(\frac{x}{20}=\frac{y}{9}=\frac{z}{6}=\frac{2y}{18}=\frac{4z}{24}=\frac{x-2y+4z}{20-18+24}=\frac{13}{26}=\frac{1}{2}\)
=> x = 1/2 . 20 = 10
=> y = 1/2.9 = 4,5
=> z = 1/2 . 6 = 3
Tìm x,y,z biết: x/2=y=z/3 và 3x-2y+4z=16
Do x/2 = z/3 => x = 2/3z
Ta có:
3x - 2y + 4z = 16
=> 3.2/3z - 2.z/3 + 4z = 16
=> 2.z - 2/3.z + 4z = 16
=> 16/3.z = 16
=> z = 16 : 16/3 = 3
=> x = 2/3.3 = 2
=> y = 3/3 = 1
\(\frac{x}{2}=\frac{y}{1}=\frac{z}{3}\Rightarrow\frac{3x}{6}=\frac{2y}{2}=\frac{4z}{12}\)
áp dụng tính chất của dãy tỉ số bằng nhau ta có
\(\frac{3x}{6}=\frac{2y}{2}=\frac{4z}{12}=\frac{3x-2y+4z}{6-2+12}=\frac{16}{16}=1\)
\(\frac{3x}{6}=1\) 3x=6 x=2 | \(\frac{2y}{2}=1\) 2y=2 y=1 | \(\frac{4z}{12}=1\) 4z=12 z=3 |
Tìm x,y,z biết: 2a=3y=4z-2y và x+y+z=45
Mình sửa lại đề cho bạn nhé: Tìm x,y,z biết: 2x=3y=4z-2y và x+y+z=45
Ta có;\(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{6}=\frac{y}{4}\) (1)
\(3y=4z-2y\Rightarrow5y=4z\Rightarrow\frac{y}{4}=\frac{z}{5}\) (2)
Từ (1) và (2) => \(\frac{x}{6}=\frac{y}{4}=\frac{z}{5}\)
Áp dụng t/c của dãy tỉ số = nhau, ta có:
\(\frac{x}{6}=\frac{y}{4}=\frac{z}{5}=\frac{x+y+z}{6+4+5}=\frac{45}{15}=3\)
Khi đó : \(\frac{x}{6}=3\Rightarrow x=18\)
\(\frac{y}{4}=3\Rightarrow y=12\)
\(\frac{z}{5}=3\Rightarrow z=15\)
Vậy ___________
Tìm x,y,z biết 2x=3y ; 2y=4z và x-y+z =18
\(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{6}=\frac{y}{4}\)
\(2y=4z\Rightarrow\frac{y}{4}=\frac{z}{2}\)
\(\Rightarrow\frac{x}{6}=\frac{y}{4}=\frac{z}{2}=\frac{x-y+z}{6-4+2}=\frac{18}{4}\)
=>x=27;y=18;z=9
vậy x=27;y=18;z=9
\(2x=3y\Rightarrow\frac{y}{2}=\frac{x}{3}\)
\(2y=4z\Rightarrow\frac{z}{2}=\frac{y}{4}\Rightarrow\frac{z}{1}=\frac{y}{2}\)
\(\frac{x}{3}=\frac{y}{2}=\frac{z}{1}\)
áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{x}{3}=\frac{y}{2}=\frac{z}{1}=\frac{x+y+z}{3+2+1}=\frac{18}{6}=3\)
\(\Rightarrow\frac{x}{3}=3\Rightarrow x=9\)
\(\Rightarrow\frac{y}{2}=3\Rightarrow y=6\)
\(\Rightarrow z=3\)