\(2^n-n-1\vdots14\) Tìm n nguyên
Cho phân số với n là số nguyên khác 1 1. Tìm phân số A với n=2; n=4;n=-4 2. Tìm số nguyên n để A là số nguyên. 3. Tìm số nguyên n để A>0
1/ Tìm số nguyên n để n+8 chia hết cho n+1
2/ Tìm số nguyên n để n+2 chia hết cho n+1
bài 2 tìm các số nguyên n thỏa mãn
a) tìm các số nguyên n sao cho 7 ⋮ (n+1)
b) tìm các số nguyên n sao cho (2n + 5 ) ⋮ (n+1)
a,
7 ⋮ n + 1 (đk n ≠ - 1)
n + 1 \(\in\) Ư(7) = {-7; - 1; 1; 7}
Lập bảng ta có:
| n + 1 | -7 | - 1 | 1 | 7 |
| n | -8 | -2 | 0 | 6 |
Theo bảng trên ta có:
n \(\in\) {-8; -2; 0; 6}
b, (2n + 5) ⋮ (n + 1) Đk n ≠ - 1
2n + 2 + 3 ⋮ n + 1
2.(n + 1) + 3 ⋮ n + 1
3 ⋮ n + 1
n + 1 \(\in\) Ư(3) = {-3; -1; 1; 3}
Lập bảng ta có:
| n + 1 | - 3 | -1 | 1 | 3 |
| n | -4 | -2 | 0 | 2 |
Theo bảng trên ta có:
n \(\in\) {-4; -2; 0; 2}
Bài 1: tìm số tự nhiên n sao cho n-1; n+1;n+5;n+7;n+11;n+13 đồng thời là số nguyên tố
Bài 2: tìm cấc số nguyên tố p sao cho p^3+p^2+11p+2 là số nguyên tố
a)Tìm các số nguyên n sao cho n+2 là ước của n+7
b)Tìm các số nguyên n sao cho n+1 là bội của n-7
c) Tìm các số nguyên n để 3n-1 là bội của n-2
Bài 3: Tìm số nguyên n để C=4n^2+n+4 là số chính phương.
Bài 4: Tìm số nguyên n để A=n^2+6n+2 là số chính phương.
Bài 5: Tìm số nguyên n để B=n^2+n+23 là số chính phương.
Bài 6: Tìm số tự nhiên n để M=1!+2!+3!+....+n! là số chính phương.
Bài 7: Tìm số nguyên n để N=n^2022+1 là số chính phương.
1 Tìm các số nguyên n để (4n+3):(n-2)
2 Tìm các số nguyên x,y sao cho xy+5 x+y+10=0
3 Tìm số nguyên n để (2n^2 +n-3):(n+1)
I don't now
mik ko biết
sorry
......................
1)\(4n+3⋮n-2\)
\(\Leftrightarrow4n+3=4\left(n-2\right)+11\)
\(\Rightarrow4\left(n-2\right)⋮n-2\)\(\Rightarrow n-2⋮n-2\)
\(\Rightarrow11⋮n-2\)
\(\Rightarrow n-2\in\left\{\pm1;\pm11\right\}\)
\(\Rightarrow n\in\left\{3;1;13;-9\right\}\)
2)\(xy+5x+y+10=0\)
\(\Leftrightarrow x\left(y+5\right)+y+5+5=0\)
\(\Leftrightarrow x\left(y+5\right)+\left(y+5\right)=-5\)
\(\Leftrightarrow\left(x+1\right).\left(y+5\right)=-5\)
| x+1 | -1 | -5 | 1 | 5 |
| y+5 | 5 | 1 | -5 | -1 |
| x | -2 | -6 | 0 | 4 |
y | 0 | -4 | -10 | -6 |
3)
Bài 1:
Tìm số nguyên n để phân số A= \(\dfrac{1}{n+3}\)có giá trị nguyên
Bài 2 : Tìm số nguyên n để phân số B = \(\dfrac{n+4}{n+1}\)có giá trị nguyên
bài 1
để A∈Z
\(=>n+3\inƯ\left(1\right)=\left\{-1;1\right\}\)
\(=>\left\{{}\begin{matrix}n+3=-1\\n+3=1\end{matrix}\right.=>\left\{{}\begin{matrix}n=-4\\n=-2\end{matrix}\right.\)
vậy \(n\in\left\{-4;-2\right\}\) thì \(A\in Z\)
Để A nguyên
⇒ \(\left(n+3\right)\inƯ\left(1\right)=\left\{\pm1\right\}\)
n+3 1 -2
n -2 -4
\(B=\dfrac{n+3+1}{n+1}=1+\dfrac{3}{n+1}\)
Để B nguyên
\(\Rightarrow\left(n+1\right)\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
n+1 1 -1 3 -3
n 0 -2 2 -4
Bài 1.Tìm số nguyên n sao cho n+6 chia hết cho n+2
Bài 2. Tìm số nguyên n sao cho 3n+2 chia hết cho n+1
Bài 3. Tìm số nguyên x biết (x-2).(x+3)<0
Bài 4. Tìm số nguyên x biết (4-2x).(x+3)>0