Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đào Thu Hiền
Xem chi tiết
Minh Anh
Xem chi tiết
Hoàng Quốc Tuấn
Xem chi tiết
Nguyễn Thị Mỹ vân
Xem chi tiết
Nguyễn Thị Mỹ vân
Xem chi tiết
Kiệt Nguyễn
Xem chi tiết
Phùng Gia Bảo
14 tháng 3 2020 lúc 9:00

Phương trình thứ hai tương đương: \(5x^4-10x^3y+x^2-2xy=0\Leftrightarrow5x^3\left(x-2y\right)+x\left(x-2y\right)=0\Leftrightarrow x\left(x-2y\right)\left(5x^2+1\right)=0\)

Vì \(5x^2+1>0\)nên \(x\left(x-2y\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=2y\end{cases}}\)

Đến đây bạn tự giải tiếp

Khách vãng lai đã xóa
Hoàng Phú Lợi
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 12 2023 lúc 20:28

loading...

loading...

loading...

Chung Đào Văn
Xem chi tiết
Hắc Thiên
Xem chi tiết
Agatsuma Zenitsu
22 tháng 1 2020 lúc 10:54

\(Đk:-1\le x\le3\)

Đặt: \(\hept{\begin{cases}u=\sqrt{x+1}\\v=\sqrt{3-x}\end{cases}}\) Ta suy ra:

\(u^2=x+1\)

\(3u^2-2v^2=5x-3\)

\(4u^2-v^2=5x+1\)

\(u^2+v^2=4\)

Pt đã cho trở thành:

\(2\left(3u^2-2v^2\right)+5uv^2=3\left(4u^2-v^2\right)\Leftrightarrow6u^2\left(2-u\right)=v^2\left(u+3\right)\)

Thay \(v^2=4-u\) ta thu được pt:

\(2\left(3u^2-2v^2\right)+5uv^2=3\left(4u^2-v^2\right)\)

\(\Leftrightarrow6u^2\left(2-u\right)=\left(4-u^2\right)\left(u+3\right)\Leftrightarrow\orbr{\begin{cases}u=2\\u=\frac{5+\sqrt{145}}{10}\end{cases}}\)

Từ đó tìm đc các nghiệm của pt là: \(\orbr{\begin{cases}x=3\\x=\frac{7+\sqrt{145}}{10}\end{cases}}\)

Khách vãng lai đã xóa
Hắc Thiên
25 tháng 1 2020 lúc 22:53

Sai r bn ơi 

Sao thay vào lại đc 5uv^2 vậy ạ phải là 5u^2v chứ

Khách vãng lai đã xóa