Những câu hỏi liên quan
Dinh Thanh Tung
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 7 2020 lúc 21:28

\(a+b+c=abc\Leftrightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)

Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x;y;z\right)\Rightarrow xy+yz+zx=1\)

\(VT=\frac{x^2yz}{1+yz}+\frac{xy^2z}{1+zx}+\frac{xyz^2}{1+xy}=\frac{x^2yz}{xy+yz+yz+zx}+\frac{xy^2z}{xy+zx+yz+zx}+\frac{xyz^2}{xy+yz+xy+zx}\)

\(VT\le\frac{1}{4}\left(\frac{x^2yz}{xy+yz}+\frac{x^2yz}{yz+zx}+\frac{xy^2z}{xy+zx}+\frac{xy^2z}{yz+zx}+\frac{xyz^2}{xy+yz}+\frac{xyz^2}{xy+zx}\right)\)

\(VT\le\frac{1}{4}\left(\frac{x^2y}{x+y}+\frac{xy^2}{x+y}+\frac{y^2z}{y+z}+\frac{yz^2}{y+z}+\frac{x^2z}{x+z}+\frac{xz^2}{x+z}\right)\)

\(VT\le\frac{1}{4}\left(xy+yz+zx\right)=\frac{1}{4}\)

Dấu "=" xảy ra khi \(a=b=c=\sqrt{3}\)

Dra Hawk
Xem chi tiết
Trần Quốc Đạt
18 tháng 12 2016 lúc 10:21

Cauchy ở mẫu \(a^2+bc\ge2a\sqrt{bc}\)

Vậy vế trái \(\le\frac{1}{2a\sqrt{bc}}+\frac{1}{2b\sqrt{ca}}+\frac{1}{2c\sqrt{ab}}=\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2abc}\)

Và lượng trên tử bé hơn bằng \(ab+bc+ca\)

Trần Quốc Đạt
18 tháng 12 2016 lúc 10:22

Mình đánh nhầm, dòng cuối cùng là \(a+b+c\)

Khôi 2k9
Xem chi tiết
Nguyễn Đức Tiến
26 tháng 10 2020 lúc 20:53

impostor

Khách vãng lai đã xóa
Khôi 2k9
26 tháng 10 2020 lúc 20:57

Vì a, b, c là độ dài ba cạnh của tam giác suy ra :a,b, c >0

Áp dụng bđt cosi ta có

\(a^2+bc\ge2a\sqrt{bc}\)

\(b^2+ac\ge2b\sqrt{ac}\)

\(c^2+ab\ge2c\sqrt{ab}\)

Suy ra 

\(\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\le\frac{1}{2a\sqrt{bc}}+\frac{1}{2b\sqrt{ac}}+\frac{1}{2c\sqrt{ab}}\)

\(=\frac{1}{2}\left(\frac{\sqrt{bc}+\sqrt{ac}+\sqrt{ab}}{abc}\right)\left(1\right)\)

Theo bđt cosi \(\frac{a+b}{2}\ge\sqrt{ab}\)

do đó  (1) \(\Leftrightarrow\frac{1}{2}\left(\frac{\sqrt{bc}+\sqrt{ac}+\sqrt{ab}}{abc}\right)\le\frac{1}{2}\left(\frac{\frac{b+c}{2}+\frac{a+c}{2}+\frac{a+b}{2}}{abc}\right)\)

\(=\frac{1}{2}\left(\frac{a+b+c}{abc}\right)=\frac{a+b+c}{2abc}\left(2\right)\)

Từ (1) và (2) suy ra \(\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\le\frac{a+b+c}{2abc}\left(đpcm\right)\)

Khách vãng lai đã xóa
Trần Thị Thảo Ngọc
Xem chi tiết
Hoàng Phú Huy
25 tháng 3 2018 lúc 12:11

  Áp dụng BĐT côsi ta có: 

a² + bc ≥ 2.a√(bc) 

<=> 1/(a² + bc) ≤ 1/(2a√(bc)) -------------(1) 

tương tự vậy: 

1/(b² + ac) ≤ 1/(2b√(ac)) -------------------(2) 

1/(c² + ab) ≤ 1/(2c√(ab)) -------------------(3) 

lấy (1) + (2) + (3) 

=> 1/(a² + bc) + 1/(b² + ac) + 1/(c² + ab) ≤ 1/(2a√(bc)) + 1/(2b√(ac)) + 1/(2c√(ab)) 

<=>1/(a² + bc) + 1/(b² + ac) + 1/(c² + ab) ≤ √(bc)/2abc + √(ac)/2abc + √(ab)/2abc 

<=>1/(a² + bc) + 1/(b² + ac) + 1/(c² + ab) ≤ [√(bc) + √(ac) + √(ab) ]/2abc (!) 

Ta chứng minh bổ đề: 

√(ab) + √(bc) + √(ac) ≤ a + b + c 

thật vậy, áp dụng BĐT côsi ta được: 

a + b ≥ 2√(ab) --- (*) 

a + c ≥ 2√(ac) --- (**) 

b + c ≥ 2√(bc) --- (***) 

lấy (*) + (**) + (***) => 2(a + b + c) ≥ 2.[ √(bc) + √(ac) + √(ab) ] 

<=> √(bc) + √(ac) + √(ab) ≤ a + b + c (@) 

từ (!) và (@) 

=> 1/(a² + bc) + 1/(b² + ac) + 1/(c² + ab) ≤ (a + b + c)/2abc ( Đpcm )

zZz Cool Kid_new zZz
15 tháng 7 2020 lúc 22:56

Áp dụng AM - GM:

\(\frac{1}{a^2+bc}\le\frac{1}{2a\sqrt{bc}};\frac{1}{b^2+ac}\le\frac{1}{2b\sqrt{ca}};\frac{1}{c^2+ab}\le\frac{1}{2c\sqrt{ab}}\)

Khi đó:

\(\frac{1}{a^2+bc}+\frac{1}{b^2+ca}+\frac{1}{c^2+ab}\le\frac{1}{2a\sqrt{bc}}+\frac{1}{2b\sqrt{ca}}+\frac{1}{2c\sqrt{ab}}\)

\(=\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2abc}\le\frac{a+b+c}{2abc}\)

Khách vãng lai đã xóa
phanvan duc
Xem chi tiết
dbrby
Xem chi tiết
tthnew
29 tháng 9 2019 lúc 20:15

Làm lại:

\(VT\le\frac{1}{2a\sqrt{bc}}+\frac{1}{2b\sqrt{ca}}+\frac{1}{2c\sqrt{ab}}\)

\(=\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2abc}\le\frac{\frac{a+b}{2}+\frac{b+c}{2}+\frac{c+a}{2}}{2abc}=\frac{a+b+c}{2abc}\)

Đẳng thức xảy ra khi a =b = c .

Ngắn gọn súc tích không biết có lỗi gì không đây:)

tthnew
29 tháng 9 2019 lúc 9:46

BĐT là đối xứng giúp em nghĩ đến cách đặt \(p=a+b+c;q=ab+bc+ca;r=abc\)

BĐT \(\Leftrightarrow2r\left(\frac{\Sigma ab\left(a^2+b^2\right)+abc\left(a+b+c\right)+\left(a^2b^2+b^2c^2+c^2a^2\right)}{\left(a^2+bc\right)\left(b^2+ca\right)\left(c^2+ab\right)}\right)\le p\)

\(\Leftrightarrow2r\left[\Sigma ab\left(a^2+b^2\right)+abc\left(a+b+c\right)+\left(a^2b^2+b^2c^2+c^2a^2\right)\right]\le p\left[abc\left(a^3+b^3+c^3\right)+a^3b^3+b^3c^3+c^3a^3+2\left(abc\right)^2\right]\)\(\Leftrightarrow2r\left[p^2q-q^2-2pr\right]\le p\left[r\left(p^3-3pq+3r\right)+q^3-3pqr+5r^2\right]\)

\(\Leftrightarrow p^4r-8p^2qr+pq^3+12pr^2+2q^2r\ge0\)

\(\Leftrightarrow12pr^2+\left(p^4+2q^2-8p^2q\right)r+pq^3\ge0\)

Chú ý 2p > 0 , theo định lí về dấu tam thức bậc 2, ta cần chứng minh \(\Delta\le0\)

\(\Leftrightarrow\left(p^4+2q^2-8p^2q\right)^2-48p^2q^3\le0\)

Em chịu rồi:( ko bt có sai chỗ nào ko nữa:( Mong tìm được cách giải tự nhiên hơn.

Nguyen
6 tháng 10 2019 lúc 15:41

Cách trên phức tạp và khó hiểu quá.

Áp dụng BĐT AM-GM:

\(\Sigma_{cyc}\left(\frac{1}{a^2+bc}\right)\le\Sigma_{cyc}\left(\frac{1}{2a\sqrt{bc}}\right)\)\(=\Sigma_{cyc}\left(\frac{\sqrt{bc}}{2abc}\right)=\frac{\sqrt{bc}+\sqrt{ca}+\sqrt{ab}}{2abc}\)\(\le\frac{a+b+c}{2abc}\)(đpcm)

Dấu = xra khi a=b=c=> Tam giác đều

#Walker

Hoàng Minh
Xem chi tiết
no
Xem chi tiết
zZ Tao Láo Nhưng Tao Khô...
24 tháng 1 2016 lúc 6:45

lấy bút xóa mà xóa hết là khỏe

Real Madrid
24 tháng 1 2016 lúc 7:02

\(botay.com.vn\)

no
24 tháng 1 2016 lúc 10:34

giai dum cai dang can gap

 

hoàng trang
Xem chi tiết
Nguyễn Việt Lâm
30 tháng 8 2020 lúc 17:34

\(VT\le\frac{1}{2\sqrt{a^2bc}}+\frac{1}{2\sqrt{b^2ac}}+\frac{1}{2\sqrt{c^2ab}}=\frac{1}{2}\left(\frac{1}{\sqrt{ab.ac}}+\frac{1}{\sqrt{ab.bc}}+\frac{1}{\sqrt{ac.bc}}\right)\)

\(VT\le\frac{1}{4}\left(\frac{1}{ab}+\frac{1}{ac}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}+\frac{1}{bc}\right)=\frac{1}{2}\left(\frac{a+b+c}{abc}\right)\)

Dấu "=" xảy ra khi \(a=b=c\)

Nguyễn Việt Lâm
30 tháng 8 2020 lúc 22:24

Tất cả đều là BĐT Cô-si đó bạn:

\(a^2+bc\ge2\sqrt{a^2bc}\Rightarrow\frac{1}{a^2+bc}\le\frac{1}{2\sqrt{a^2bc}}\)

\(\frac{1}{\sqrt{ab.ac}}=\sqrt{\frac{1}{ab}}.\sqrt{\frac{1}{ac}}\le\frac{1}{2}\left(\frac{1}{ab}+\frac{1}{ac}\right)\) (chính là BĐT Cô-si dạng \(\sqrt{xy}\le\frac{1}{2}\left(x+y\right)\) thôi)