Chứng minh đa thức A(x)= x^7+x^5-x^4-1 chỉ có 1 nghiệm là x =1
Chứng minh đa thức A(x)= x^7+x^5-x^4-1 chỉ có 1 nghiệm là x =1
1 . Cho f ( x ) = 4x³ - 2x² + x - 5 g ( x ) = x³ + 4 x² - 3x + 2 h ( x ) = -3 x ³ + x² + x - 2 Tính : a ) f ( x ) + g ( x ) b ) g ( x ) - h ( x ) 2 . Tìm nghiệm đa thức : a , 7 - 2x b , ( x + 1 ) ( x - 2 ) ( 2x - 1 ) c , 2x + 5 d , 3x ² + x 3 . Chứng minh rằng các đa thức sau không có nghiệm : a , f ( x ) = x ² + 1 b , ( 2x + 1 ) ² + 3
Trình bày đề bài cho dễ nhìn bạn eyy :v
Khó nhìn như này thì God cũng chịu -.-
mù mắt xD ghi rõ đề đi bạn ơi !
Dịch:
Cho \(\hept{\begin{cases}f\left(x\right)=4x^3-2x^2+x-5\\g\left(x\right)=x^3+4x^2-3x+2\\h\left(x\right)=-3x^2+x^2+x-2\end{cases}}\)
Tính a) \(f\left(x\right)+g\left(x\right)\)
b) \(g\left(x\right)-h\left(x\right)\)
2. Tìm nghiệm của đa thức
a) \(7-2x\)
b) (x+1)(x-2)(2x-1)
c) 2x+5
d) 3x2+x
3. CMR các đa thức sau không có nghiệm
\(a,f\left(x\right)=x^2+1\)
\(b,\left(2x+1\right)^2+3\)
6. Biết rằng phương trình x 3 −3x 2 +3 = 0 có ba nghiệm phân biệt. Chứng minh rằng trong ba nghiệm này có hai nghiệm a,b thoả mãn ab+3 = a+2b.
7. Cho đa thức P(x) = 2x 4 −x 3 −5x 2 +5x−5. Gọi a,b, c là ba nghiệm phân biệt của đa thức Q(x) = x 3 −3x+1. Tính P(a).P(b).P(c).
8. Biết rằng phương trình P(x) = x 3 +3x 2 −1 có ba nghiệm phân biệt a < b < c. Chứng minh rằng c = a 2 +2a− 2,b = c 2 +2c−2,a = b 2 +2b−2.
1/ Chứng minh M(x)= -x2 + 5 không có nghiệm.
2/ Tìm hệ số a của đa thức M(x)= a x2 + 5 x - 3, biết rằng đa thức này có một nghiệm là \(\dfrac{1}{2}\)
a/ \(M\left(x\right)=-x^2+5\)
Có \(-x^2\le0\forall x\)
=> \(M\left(x\right)\le5\forall x\)
=> M(x) không có nghiệm.
2/
Thay \(x=\dfrac{1}{2}\) vào đa thức M(x) có
\(M\left(\dfrac{1}{2}\right)=\dfrac{1}{4}a+\dfrac{5}{2}-3=0\)
\(\Leftrightarrow\dfrac{1}{4}a=\dfrac{1}{2}\)
\(\Leftrightarrow a=2\)
Vậy...
a) Tìm nghiệm đa thức A(x) = 3x - 1
b) Chứng minh rằng đa thức B(x) = x^5 + x + 1 không có nghiệm
a) Cho \(A\left(x\right)=0\)
\(\Leftrightarrow3x-1=0\)
\(\Leftrightarrow x=\frac{1}{3}\)
Vậy \(\frac{1}{3}\)là nghiệm của đa thức
b) Đề sai, vì đa thức trên có nghiệm!
a) Kiểm tra xem 1,-2,1/2 có phải là nghiệm của đa thức P(x)= x^3 - x^2 - 4x + 4 hay ko?
b) Chứng minh rằng đa thức P(x)= 5x^3 - 7x^2 + 4x -2 có một nghiệm là 1
a: \(P\left(1\right)=1^3-1^2-4\cdot1+4=-4+4=0\)
=>x=1 là nghiệm của P(x)
\(P\left(-2\right)=\left(-2\right)^3-\left(-2\right)^2-4\cdot\left(-2\right)+4=-8-4+8+4=0\)
=>x=-2 là nghiệm của P(x)
b: \(P\left(1\right)=5\cdot1^3-7\cdot1^2+4\cdot1-2=5-7+4-2=0\)
=>x=1 là nghiệm của P(x)
1.Tìm nghiệm đa thức
1)6x3 - 2x2
2)|3x + 7| + |2x2 - 2|
2.Chứng minh đa thức ko có nghiệm
1)x2 + 2x + 4
2)3x2 - x + 5
3.Tìm các hệ số a, b, c, d của đa thức f(x) = ax3 + bx2+ cx + d
Biết f(0)=5; f(1)=4; f(2)=31; f(3)=88
Bài 1:
1.
$6x^3-2x^2=0$
$2x^2(3x-1)=0$
$\Rightarrow 2x^2=0$ hoặc $3x-1=0$
$\Rightarrow x=0$ hoặc $x=\frac{1}{3}$
Đây chính là 2 nghiệm của đa thức
2.
$|3x+7|\geq 0$
$|2x^2-2|\geq 0$
Để tổng 2 số bằng $0$ thì: $|3x+7|=|2x^2-2|=0$
$\Rightarrow x=\frac{-7}{3}$ và $x=\pm 1$ (vô lý)
Vậy đa thức vô nghiệm.
Bài 2:
1. $x^2+2x+4=(x^2+2x+1)+3=(x+1)^2+3$
Do $(x+1)^2\geq 0$ với mọi $x$ nên $x^2+2x+4=(x+1)^2+3\geq 3>0$ với mọi $x$
$\Rightarrow x^2+2x+4\neq 0$ với mọi $x$
Do đó đa thức vô nghiệm
2.
$3x^2-x+5=2x^2+(x^2-x+\frac{1}{4})+\frac{19}{4}$
$=2x^2+(x-\frac{1}{2})^2+\frac{19}{4}\geq 0+0+\frac{19}{4}>0$ với mọi $x$
Vậy đa thức khác 0 với mọi $x$
Do đó đa thức không có nghiệm.
Bài 3:
$f(0)=a.0^3+b.0^2+c.0+d=d=5$
$f(1)=a+b+c+d=4$
$a+b+c=4-d=-1(*)$
$f(2)=8a+4b+2c+d=31$
$8a+4b+2c=31-d=26$
$4a+2b+c=13(**)$
$f(3)=27a+9b+3c+d=88$
$27a+9b+3c=88-d=83(***)$
Từ $(*); (**); (***)$ suy ra $a=\frac{1}{3}; b=13; c=\frac{-43}{3}$
Vậy.......
Bài 1: a)Chứng tỏ rằng x = 1, x = 7 là hai nghiệm của đa thức g(x) = x^2 - 8x + 7
b) Trong tập {1; 2; -1; 0} số nào là nghiệm của đa thức k(x) = x^4 + 2x^3 - x^2 + x - 3
c) Cho đa thức f(x) = ax^2 + bx + c (a, b, c là hằng số). Chứng minh rằng
Nếu a-b+c = 0 thì f(x) có một nghiệm x = -1
Bài 2: Tìm nghiệm của các đa thức sau:
a) f(x) = 5x + 7 b)h(x) = x^3 + 27
c) 3(x -2) - 5(x+1) d) (2x+5)(x-3)
Bài 1:
Tìm hệ số a của đa thức M(x)=\(a\cdot x^2+5\cdot x-3\) biết rằng đa thức này có một nghiệm là \(\frac{1}{2}\)
Bài 2:
Chứng minh đa thức Q(x)=\(x^4+3\cdot x^2+1\)ko có nghiệm với mọi giá trị của x.
Bài 1:
ta có M(x)=a.x2+5.x-3 và x=\(\frac{1}{2}\)
Cho M=0
\(\Rightarrow\)a.1/22+5.1/2-3=0
a.1/4+5/2-3=0
a.1/4-1/2=0
a.1/4=1/2
a=1/2:1/4
a=2
Bài 2
Q(x)=x4+3.x2+1
=x2.x2+1,5.x2+1,5.x2+1,5.1,5-1,25
=x2.(x2+1,5)+1,5.(x2+1,5)-1,25
=(x2+1,5)(x2+1,5)-1,25
\(\Rightarrow\)(x2+1,5)2 \(\ge\)0 với \(\forall\)x
\(\Rightarrow\)(x2+1,5)2-1,25\(\ge\)1,25 > 0
Vậy đa thức Q ko có nghiệm