Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
tran thi phuong anh
Xem chi tiết
Đức Anh Gamer
Xem chi tiết
Thy Anh Vũ
17 tháng 11 2021 lúc 20:33

Điều kiện \(x\ge-1\)

Phương trình đã cho tương đương với

\(\left(x+1\right)\sqrt{x+1}+4\sqrt{x+1}+1=\sqrt[3]{3x+4}\)

\(\Leftrightarrow\left(x+1\right)\sqrt{x+1}+4\sqrt{x+1}+1+3\left(x+1\right)+1=\sqrt[3]{3x+4}+\left(\sqrt[3]{3x+4}\right)^3\)

\(\Leftrightarrow\left(\sqrt{x+1}+1\right)^2+\left(\sqrt{x+1}+1\right)=\left(\sqrt[3]{3x+4}\right)^3+\sqrt[3]{3x+4}\) (*)

Xét hàm số f(t) =t3+t trên R

                   f'(t)=3t2+1>0 với mọi x \(\in\)R

Nên (*) \(\Leftrightarrow f\left(\sqrt{x+1}+1\right)=f\left(\sqrt[3]{3x+4}\right)\Leftrightarrow\sqrt{x+1}+1=\sqrt[3]{3x+4}\)

Đặt \(\left\{{}\begin{matrix}u=\sqrt{x+1}\\y=\sqrt[3]{3x+4}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}u+1=v\\3u^2+1=v^3\end{matrix}\right.\)

\(\Rightarrow v^3=3\left(v-1\right)^2+1\Leftrightarrow v^3-1-3\left(v-1\right)^2=0\Leftrightarrow v=1\)

Với v=1 => x=-1

Vậy x=-1 là nghiệm của phương trình

hyun mau
Xem chi tiết
Trần Thị Loan
2 tháng 4 2015 lúc 1:04

(6x+7)2.2.(3x+4).6.(x+1) = 72

=> (6x+7)2. (6x+8).(6x+6)= 72

=>  (6x+7)2. (6x+7 + 1)(6x+7 - 1) = 72

=> (6x+7)2. [(6x+7)- 1] = 72

=> (6x+7) - (6x+7)2 = 72 => (6x+7)4 -9.(6x+7)2 + 8.(6x+7)2 - 72 = 0

=> (6x+7)2. [(6x+7)2 - 9] + 8.[(6x+7)2 - 9] = 0

=> [(6x+7)2 + 8].[(6x+7)2 - 9] = 0

=> (6x+7)2 - 9 = 0 Vì (6x+7)2 + 8 > o với mọi x

=> (6x+7)2 = 9 => 6x + 7 = 3 hoặc -3 

6x+ 7 =3 => x = -2/3

6x+7 = -3 => x = -5/3

Vậy  x = -2/3; -5/3

Seu Vuon
2 tháng 4 2015 lúc 17:46

(6x +7)2(3x +4)(x +1) =6 <=> (6x +7)2(6x +8)(x +1) = 12

Đặt 6x +7 =t => 6x + 8 = t +1 ; x =(t - 7)/6 ; x +1 = (t -1)/6

Pt trở thành : \(t^2\left(t+1\right)\frac{t-1}{6}=12\Leftrightarrow t^4-t^2-72=0\Leftrightarrow\left(t^2-9\right)\left(t^2+8\right)=0\)

<=> \(t^2-9=0\)( vì t2 +8 >0) <=> t = 3 hay t = -3

t =3 => 6x +7 = 3 => x = -2/3

t= -3 => 6x +7 = -3 => x = -5/3

LÊ THU HƯƠNG
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 7 2023 lúc 19:11

=>\(\dfrac{-1}{x-1}+\dfrac{1}{x-2}-\dfrac{1}{x-2}+\dfrac{1}{x-3}-\dfrac{1}{x-3}+\dfrac{1}{x-4}=2\)

=>\(\dfrac{1}{x-4}-\dfrac{1}{x-1}=2\)

=>\(\dfrac{x-1-x+4}{x^2-5x+4}=2\)

=>2x^2-10x+8=3

=>2x^2-10x+5=0

=>\(x=\dfrac{5\pm\sqrt{15}}{2}\)

cảnh
Xem chi tiết
Nguyễn Thị Ánh Tuyết 123
18 tháng 4 2015 lúc 7:36

x=3 hoặc  x=-6 hoặc x=-2/3

dinh van thien quoc
18 tháng 4 2015 lúc 19:55

(x-3)(x+6)(3x+2) = 0

(=) x-3 =0 hoặc x+6 = 0 hoặc 3x+2 = 0

 (=) x = 3 hoặc x = -6 hoặc x = -2/3

 

Minh Đinh trọng
Xem chi tiết
Pikachuuuu
17 tháng 2 2021 lúc 23:45

a,\(11-2x=x-1\Leftrightarrow-2x-x=-1-11\Leftrightarrow-3x=-12\Leftrightarrow x=-4\)

b,\(\text{5(3x+2)=4x+1}\Leftrightarrow15x+10=4x+1\Leftrightarrow15x-4x=1-10\Leftrightarrow11x=-9\Leftrightarrow x=\dfrac{-9}{11}\)

c,\(x^2-4-\left(x-2\right)\left(x-5\right)\Leftrightarrow\left(x+2\right)\left(x-2\right)-\left(x-2\right)\left(x-5\right)\Leftrightarrow\left(x-2\right)[\left(x+2\right)-\left(x-5\right)]\Leftrightarrow\left(x-2\right)\left[x+2-x+5\right]\Leftrightarrow\left(x-2\right)7\Leftrightarrow7x-14\)

Nguyễn Thái Sơn
Xem chi tiết
Hồng Phúc
13 tháng 12 2020 lúc 11:29

a. Trừ vế theo vế \(\left(1\right)\) cho \(\left(2\right)\) ta được \(x^2-y^2=4x-4y\)

\(\Leftrightarrow\left(x-y\right)\left(x+y-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=y\\x=4-y\end{matrix}\right.\)

TH1: \(x=y\)

Phương trình \(\left(1\right)\) tương đương:

\(x^2=2x\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=y=0\\x=y=2\end{matrix}\right.\)

TH2: \(x=4-y\)

Phương trình \(\left(2\right)\) tương đương:

\(y^2=4y-4\)

\(\Leftrightarrow y^2-4y+4=0\)

\(\Leftrightarrow\left(y-2\right)^2=0\)

\(\Leftrightarrow y=2\)

\(\Rightarrow x=2\)

Vậy hệ đã cho có nghiệm \(\left(x;y\right)\in\left\{\left(0;0\right);\left(2;2\right)\right\}\)

b. \(\left\{{}\begin{matrix}x+y+xy=5\\x^2+y^2=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}xy=5-\left(x+y\right)\\\left(x+y\right)^2-2xy=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}xy=5-\left(x+y\right)\\\left(x+y\right)^2-10+2\left(x+y\right)=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}xy=5-\left(x+y\right)\\\left(x+y\right)^2+2\left(x+y\right)-15=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}xy=5-\left(x+y\right)\\\left(x+y+5\right)\left(x+y-3\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}xy=5-\left(x+y\right)\\\left[{}\begin{matrix}x+y=-5\\x+y=3\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+y=-5\\xy=10\end{matrix}\right.\\\left\{{}\begin{matrix}x+y=3\\xy=2\end{matrix}\right.\end{matrix}\right.\)

TH1: \(\left\{{}\begin{matrix}x+y=-5\\xy=10\end{matrix}\right.\Leftrightarrow\) vô nghiệm

TH2: \(\left\{{}\begin{matrix}x+y=3\\xy=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\\\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\end{matrix}\right.\)

Vậy ...

Phương Đặng
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 6 2022 lúc 12:59

a: \(\Leftrightarrow x+2-3xm-m=5\)

\(\Leftrightarrow x\left(1-3m\right)=5+m-2=m+3\)

Để đây là pt bậc nhất thì -3m+1<>0

hay m<>1/3

b: Khi m=-1 thì pt sẽ là \(x\left(1+3\right)=-1+3=2\)

=>x=1/2

Uchiha Sasuke
Xem chi tiết
๖Fly༉Donutღღ
8 tháng 5 2018 lúc 19:19

Lần sau ghi cái trị tuyệt đối thẳng lên bạn :))))

a) \(2\left|x\right|-\left|x+1\right|=2\left(1\right)\)

- Nếu \(x>0>-1\Leftrightarrow x>0;x+1>0\)

thì \(pt\left(1\right):2x-x-1=2\Leftrightarrow x=3\)( nhận )

- Nếu \(-1\le x\le0\Leftrightarrow x\le0;x+1\ge0\)

thì \(pt\left(1\right):-2x-x-1=2\Leftrightarrow x=-1\)( nhận )

- Nếu \(x< -1< 0\Leftrightarrow x< 0;x+1< 0\)

thì \(pt\left(1\right):-2x+x+1=2\Leftrightarrow x=-1\)( loại )

Vậy phương trinh có 2 nghiệm x = 3 và x = -1

b) \(\left|3x-5\right|=\left|x+2\right|\)

\(\Leftrightarrow\orbr{\begin{cases}3x-5=x+2\\3x-5=-x-2\end{cases}\Leftrightarrow\orbr{\begin{cases}3x-x=2+4\\3x+x=5-2\end{cases}}}\)

\(\Leftrightarrow\orbr{\begin{cases}2x=7\\4x=3\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{7}{2}=3,5\\x=\frac{3}{4}=0,75\end{cases}}}\)

Vậy phương trình trên có 2 nghiệm x = 3,5 và x = 0,75

Hiếu Thông Minh
8 tháng 5 2018 lúc 19:31

a) 2IxI-Ix+1I=2

x -1 0 
IxI-x I-x0x
x+1-x-10x+1Ix+1

+)x<-1

<=>-2x+x+1=2

<=>-x=1

<=>x=-1(không TMĐK)

+)-1\(\le\)x<0

<=>-2x-x-1=2

<=>-3x=3

<=>x=-1(TMĐK)

+)x\(\ge\)0

<=>2x-x-1=2

<=>x=3(TMĐK)

vậy tập nghiệm của pt đã cho là :{-1;3}