Chứng minh (a^2014+ 1)/(a^2013+ 1) < (a^2015+ 1)/(a^2014+ 1)
Cho a^2014 + b^2014 + c^2014 =1 và a^2015 + b^2015 + c^2015 =1. Tính tổng A= a^2013+b^2014+c^2015
a2014+b2014+c2014=1
a2015+b2015+c2015=1
=>a2014+b2014+c2014=a2015+b2015+c2015=1
=>a=b=1
=>A=3
cho A =2014^2015+1/2014^2015+1 và B =2014^2014+1/2014^2013+1
So sánh A và B ta được A..........B
Bạn à, đây không phải là toán lớp 5 nên mình không giải được nên bạn thông cảm nha!
UK ĐÂY TOÁN 6 ĐÓ
cho A=1*4/2*3 + 2*5/3*4+3*6/4*5+.....+2013*2016/2014*2015 . Chứng minh 2012< A < 2013
so sánh A=2014^2014+1/2014^2015+1 và B=2014^2013+1/2014^2014+1
Có \(2004A=\frac{2014^{2015}+2014}{2014^{2015}+1}=\frac{2014^{2015}+1+2013}{2014^{2015}+1}=1+\frac{2013}{2014^{2015}+1}\)
\(2014B=\frac{2014^{2014}+2014}{2014^{2014}+1}=\frac{2014^{2014}+1+2013}{2014^{2014}+1}=1+\frac{2013}{2014^{2014}+1}\)
Vì \(\frac{2013}{2014^{2015}+1}< \frac{2013}{2014^{2014}+1}\)
=> \(1+\frac{2013}{2014^{2015}+1}< 1+\frac{2013}{2014^{2014}+1}\)
=> \(A< B\)
Tính
\(A=\left(\dfrac{1}{5}+\dfrac{2013}{2014}+\dfrac{2015}{2016}+1\right)\left(\dfrac{2013}{2014}+\dfrac{2015}{2016}+\dfrac{1}{10}\right)-\left(\dfrac{1}{5}+\dfrac{2013}{2014}+\dfrac{2015}{2016}\right)\left(\dfrac{2013}{2014}+\dfrac{2015}{2016}+\dfrac{1}{10}+1\right)\)
Đặt \(\dfrac{1}{5}+\dfrac{2013}{2014}+\dfrac{2015}{2016}=B;\dfrac{2013}{2014}+\dfrac{2015}{2016}+\dfrac{1}{10}=C\)
\(A=\left(B+1\right)\cdot C-B\cdot\left(C+1\right)\)
\(=BC+C-BC-B\)
=C-B
\(=\dfrac{2013}{2014}+\dfrac{2015}{2016}+\dfrac{1}{10}-\dfrac{1}{5}-\dfrac{2013}{2014}-\dfrac{2015}{2016}=-\dfrac{1}{10}\)
Tính : A=1 /2016. 2015 +1/2015. 2014+1/2013. 2014+... +1/1. 2
so sánh A và B biết:A= 2013 x 2014-1/2013 x 2014 ,B=2014x2015 -1 / 2014 x 2015
A=1-1/(2013*2014)
B=1-1/(2014*2015)
2013*2014<2014*2015
=>1/2013*2014>1/2014*2015
=>-1/2013*2014<-1/2014*2015
=>A<B
cho a = 2015/2014^2+1 + 2015/2014^2+2 + ...... + 2015/2014^2+2014 . chứng minh rằng a không thuộc Z
cho a = 2015/2014^2+1 + 2015/2014^2+2 + ...... + 2015/2014^2+2014 . chứng minh rằng a không thuộc Z