TÌm n thuôc Z để phân số 2n+15/n+1 là một số nguyên
tìm n thuôc Z để phân số n+10/2n-8 có giá trị nguyên
Để n+10/2n-8 có gt nguyên suy ra n+10 chia hết cho 2n-8.
Ta có: n+10:2n-8. (Các bạn viết dấu chia hết cho mk nhé mk không viết được)
2(n+10):2n-8
2n+20:2n-8
2n-8+28:2n-8
Vì 2n-8:2n-8 suy ra 28:2n-8(tính chất chia hết của một tổng)
suy ra14: n-4,suy ra n-4 thuộc Ư(14)={1;14;2;7;-1;-14;-2;-17}
Ta có bảng:
n-4 14 2 7 -1 -14 -2 -7
n
phân số
\(\frac{n+10}{2n-8}\in Z\Rightarrow n+10⋮2n+8\)
\(\Rightarrow2n+20⋮2n+8\)
\(\Rightarrow12⋮2n+8\)
Mà 2n + 8 luôn chẵn
\(\Rightarrow2n+8\in\left\{-12;-6;-4;-2;2;4;6;12\right\}\)
\(\Rightarrow2n\in\left\{-20;-14;-12;-6;-4;-2;4\right\}\)
\(\Rightarrow n\in\left\{-10;-7;-6;-3;-2;-1;2\right\}\)
tìm N thuộc Z để phân số 2n+15/2n-1 là một số nguyên
\(\frac{2n+15}{2n-1}=\frac{2n-1+16}{2n-1}=1+\frac{16}{2n-1}\)
Để phân số trên nguyên \(\Leftrightarrow\frac{16}{2n-1}\) nguyên.
\(\Leftrightarrow2n-1=Ư\left(16\right)=\left\{-16;-8;-4;-2;-1;1;2;4;8;16\right\}\)
Rồi bạn tự tìm n nha !
tìm n thuộc z để phân số 2n+15/n+1 là một số nguyên
Ta có 2n+15 = 2n+2+13 = 2.(n+1) + 13
Để p/số có giá trị là số nguyên thì 2n+15 chia hết cho n+1 hay 2.(n+1) +13 chia hết cho n+1 mã 2.(n+1) chia hết cho n+1 nên 13 chia hết cho n+1 suy ra n+1 thuộc Ư(13)
Mả U(13) = {-13;-1;1;13} suy ra n+1 thuoc{-13;-1;1;13}
Vì n thuộc Z nên ta có bảng sau
n+1 | -13 | -1 | 1 | 13 |
n | -14 | -2 | 0 | 12 |
n/xét | chon | chon | chon | chon |
Vậy với n thuộc { -14;-2;0;12} thì p/số có giá trị là số nguyên
k nha !!!!!
Tìm số n thuộc Z để phân số 2n+15/n+1 là số nguyên
Phân số \(\frac{2n+15}{n+1}\in Z\)khi 2n+15 là bội của n+1.Ta có : 2n+15 = 2n+2+13 = 2(n+1)+13.Vì 2(n+1) là bội của n+1 nên để thỏa mãn đề thì 13 là bội của n+1 => n+1\(\in\left\{-13;-1;1;13\right\}\) => n\(\in\left\{-14;-2;0;12\right\}\)
Để 2n + 5 / n + 1 là số nguyên thì 2n + 5 / n + 1 ∈ Z hay 2n + 5 ⋮ n + 1
2n + 5 ⋮ n + 1 <=> 2.( n + 1 ) + 3 ⋮ n + 1
Vì 2.( n + 1 ) ⋮ n + 1 , để 2.( n + 1 ) + 3 ⋮ n + 1 <=> 3 ⋮ n + 1 => n + 1 ∈ Ư ( 3 )
Ư ( 3 ) = { + 1 ; + 3 }
Ta có bảng sau :
n + 1 | 1 | - 1 | 3 | - 3 |
n | 0 | - 2 | 2 | - 4 |
Vậy n ∈ { + 2 ; 0 ; - 4 }
Tìm số n thuộc z để phân số 2n+15/n+1 là số nguyên
đặt A=2n+15/n+1
ta có A=2(n+1)+13/n+1=1+13/n+1
=>để A nguyên thì 13/n+1 phải nguyên =>n+1 thuộc Ư(13)={+1;+13}
ta có bảng giá trị
n+1 -1 -13 13 1
n -2 -14 12 0
BÃO L_I_K_E NHA BẠN
đặt A=2n+15/n+1
ta có A=2(n+1)+13/n+1=2+13/n+1
=>để A nguyên thì 13/n+1 phải nguyên =>n+1 thuộc Ư(13)={+1;+13}
ta có bảng giá trị
n+1 ={ -1 ;-13; 13 ; 1}
n ={ -2 ; -14 ; 12 ;0}
Cho B = 2n+2/2n-4
a, Tìm n để a là p/ vs thuôc Z
b, tìm số nguyên n để b là số nguyên
c, B có phải là p/s tối giản ko, vì sao ?
a) a liên quan đến bài này ??
b) Để b là số nguyên thì 2n + 2 chia hết cho 2n - 4.
Ta có: 2n + 2 chia hết cho 2n - 4
=> (2n - 4) + 6 chia hết cho 2n - 4
=> 6 chia hết cho 2n - 4 hay 2n - 4 thuộc Ư(6) = {-6; -3; -2; -1; 1; 2; 3; 6}
Để n nguyên thì 2n - 4 là chẵn => 2n - 4 thuộc {-6; -2; 2; 6}
=> n thuộc {-1; 1; 3; 5}
Tìm n thuộc Z để phân số 2n+15/n+1 có giá trị là mmột số nguyên
Để phân số trên nguyên
=> 2n+15 chia hết cho n+1
=> 2n+14+1 chia hết cho n+1
Vì 2n+14 chia hết cho n+1
=> 1 chia hết cho n+1
=> n+1 thuộc Ư(1)
=> n+1 thuộc {1; -1}
=> n thuộc {0; -2}
Để 2n + 15/n + 1 nguyên
Thì 2n+15 chia hết cho n+1
=> 2n+2 + 13 chia hết cho n+1
=> 2.(n + 1) + 13 chia hết cho n+1
=> 13 chia hết cho n+1
=> n+1 thuộc Ư(13)={-1;1;-13;13}
Ta có:
n + 1 | -1 | -13 | 1 | 13 |
n | -2 | -14 | 0 | 12 |
Tìm n thuộc z để phân số 2n+15/n+1 là số nguyên
=>2(n+1)+13/n+1 nguyên
=>2+13/n+1 nguyên
=>13chia hết cho n+1
bn tự lm tiếp nhé
2n+15 chia hết cho n+1
n+1 chia hết cho n+1
=> 2(n+1) chia hết cho n+1 => 2n+2 chia hết cho n+1
=> (2n+15)-(2n+2) chia hết cho n+1
=> 13 chia hết cho n+1
=) n+1\(\in\)Ư(13)=(-1; -13; 1; 13)
=> n\(\in\)(-2; -14; 0; 12)
Để n ϵ Z để phân số 2n+15/ n+1 là số nguyên
Ta có: \(\dfrac{2n+15}{n+1}=\dfrac{2n+2+13}{n+1}=\dfrac{2\left(n+1\right)+13}{n+1}=\dfrac{2\left(n+1\right)}{n+1}+\dfrac{13}{n+1}=2+\dfrac{13}{n+1}\)( ĐK : \(n\ne-1\))
Để \(\dfrac{2n+15}{n+1}\in Z\) thì \(13⋮n+1\) hay \(n+1\inƯ\left(13\right)=\left\{13;-13;1;-1\right\}\)
Ta có bảng sau
n+1 | 13 | -13 | 1 | -1 |
n | 12 | -14 | 0 | -2 |
Vậy để \(\dfrac{2n+15}{n+1}\) là số nguyên thì \(n\in\left\{12;-14;0;-2\right\}\)
Chúc bạn học tốt
Ta có:
2n + 15 = 2n + 2 + 13 = 2(n + 1) + 15
Để phân số đã cho là số nguyên thì n + 1 ∈ Ư(15) = {-15; -5; -3; -1; 1; 3; 5; 15}
⇒ n ∈ {-16; -6; -2; 0; 2; 4; 14}