Tìm các số nguyên tố x, y thoả mãn: 272. x = 11y + 29
Hãy giúp tôi với~
1/ Tìm các số nguyên tố x, y thỏa mãn: 272x =11y + 29
2/ Tìm số tự nhiên n có 16 ước số, biết n chia hết cho 65 và n chia hết cho 125
3/ Tìm các số tự nhiên x, y biết: 2xy + x = 5y
1/ Đề là $11y$ hay $11^y$ vậy bạn? Bạn xem lại đề.
2/
$n\vdots 65, n\vdots 125$
$\Rightarrow n=BC(65,125)$
$\Rightarrow n\vdots BCNN(65,125)$
$\Rightarrow n\vdots 1625$
$\Rightarrow n=1625k$ với $k$ tự nhiên.
$n=1625k=5^3.13.k$
Nếu $k=1$ thì $n$ có $(3+1)(1+1)=8$ ước (loại)
Nếu $k>1$ thì $n$ có ít nhất $(3+1)(1+1)(1+1)=16$ ước nguyên tố.
$n$ có đúng 16 ước nguyên tố khi mà $k$ là 1 số nguyên tố.
Vậy $n=1625p$ với $p$ là số nguyên tố.
3/
$2xy+x=5y$
$\Rightarrow x(2y+1)=5y$
$\Rightarrow x=\frac{5y}{2y+1}$ ($2y+1\neq 0$ với mọi $y$ tự nhiên)
Để $x$ tự nhiên thì $5y\vdots 2y+1$
$\Rightarrow 10y\vdots 2y+1$
$\Rightarrow 5(2y+1)-5\vdots 2y+1$
$\Rightarrow 5\vdots 2y+1$
$\Rightarrow 2y+1\in \left\{1; 5\right\}$ (do $y$ là số tự nhiên)
$\Rightarrow y\in \left\{0; 2\right\}$
Nếu $y=0$ thì $x=\frac{5y}{2y+1}=0$
Nếu $y=2$ thì $x=\frac{5y}{2y+1}=\frac{10}{5}=2$
1 Tìm số nguyên x sao cho 4x + 3 chia hết cho x - 2
2 Tìm hai số nguyên dương x và y thoả mãn cả ba điều kiện sau
a) ( x + 3 ) \(⋮\)y b) x = 3y + 5 c) ( x + 11y ) là số nguyên tố
Tìm các số nguyên tố x,y,z thoả mãn x^y+1=z
Tìm x,y thỏa mãn :
a) x = 3y+5 b) (x+11y) là số nguyên tố
Tìm các số nguyên dương x,y thoả mãn x^3+y^3-3xy+1 là số nguyên tố
Tìm các số nguyên tố x, y thoả mãn: 824.y – 16x = 24
tìm x, y là các số nguyên tố thoả mãn 15x - 7y = y^2
Toán cô Hương BG ấy gì thảo nào quen quen
tìm các số nguyên tố x;y thoả mãn:(x-2)^2.(y-3)=-4
KO TỀM ĐC VÌ X NGUYÊN TỐ THÌ Y KO NGUYÊN TỐ .(CHƯA CHẮC ĐÃ DÚNG NHA)
a.Tìm x, y nguyên biết: xy + 3x - y = 6
b. Tìm mọi số nguyên tố thoả mãn: x2 - 2y2 = 1
c. Tìm các số nguyên thoả mãn: x - y + 2xy = 7
d. Tìm x, y thuộc N biết : 25 - y2 = 8( x - 2012)2