cho a,b,c là độ dài 3 cạnh của một tam giác chứng minh bất đẳng thức
abc>/ (b+c-a)(a+c-b)(a+b-c)
Chứng minh bất đẳng thức :
abc > ( b + c - a ) ( a + c - b ) ( a + b - c )
với a , b,c là độ dài của 3 cạnh tam giác
Ta có :
( b + c - a ) ( b + a - c ) = b2 - ( c - a )2 < b2
( c + a - b ) ( c + b - a ) = c2 - ( a - b ) 2 < c2
( a + b - c ) ( a + c - b ) = a2 - ( b - c )2 < a2
Nhân từng vế ba bất đẳng thức trên ta được
[ ( b + c - a ) ( a + c - b ) ( a + b - c ) ]2 < [ abc ]2
Các biểu thức trong dấu ngoặc vuông đều dương nên
( b + c - a ) ( a + c - b ) ( a + b - c ) < abc
Xảy ra đẳng thức khi và chỉ khi a = b =c
Chững minh bất đẳng thức
abc\(\ge\) (b+c-a)(a+c-b)(a+b-c)
với a,b,c là độ dài ba cạnh của một tam giác
Ta có :
(b+c-a)(b+a-c)=b2-(c-a)2\(\le\) b2
(c+a-b)(c+b-a)=c2_(a-b)2\(\le\) c2
(a+b-c)(a+b-c)=a2-(b-c)2\(\le\) a2
nhân từng vế ba bất đẳng thức trên ,ta được :
[(b+c-a)(a+c-b)(a+b-c)]2\(\le\) [abc]2
các biểu thức trong dấu ngoặc vuông đều dương nên :
(b+c-a)(a+c-b)(a+b-c)\(\le\) abc
dấu "=" xảy ra khi a=b=c
đặt b+c-a=x; a+c-b=y; a+b-c=z thì x,y,z>0
theo bất đẳng thức (x+y)(y+z)(z+x)\(\ge\) 8xyz
=> 2a.2b.2c\(\ge\) 8(b+c-a)(a+c-b)(a+b-c)
=>abc \(\ge\) (b+c-a)(a+c-b)(a+b-c)
xảy ra đẳng thức khi và chỉ khí a=b=c
Chứng minh các bất đẳng thức :
Cho a + b + c = 0 . Chứng minh rằng : a3 + b3 + c3 = 3abc.Cho a, b, c là độ dài ba cạnh của tam giác. Chứng minh rằng :
Chứng minh các bất đẳng thức :
Cho a + b + c = 0 . Chứng minh rằng : a3 + b3 + c3 = 3abc.Cho a, b, c là độ dài ba cạnh của tam giác. Chứng minh rằng :a+b+c => a+b= -c
=> (a+b)2 = (-c)2
=> a3+b3+3ab(a+b) = -c2
=> a3+b3+c3 = -3ab(a+b)
=> a2+b2+c2 = -3ab(-c) = 3abc
chứng minh bất đẳng thức
cho a,b,c là độ dài các cạnh của tam giác CMR:\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}>2\)
chứng minh bất đẳng thức
\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}>1\)
với a,b,c là độ dài 3 cạnh của tam giác
Có:\(\frac{a}{b+c}>\frac{a}{a+b+c}\)vì a,b,c>0
tương tự \(\frac{b}{c+a}>\frac{b}{a+b+c}\)
\(\frac{c}{a+b}>\frac{c}{a+b+c}\)
Cộng từ vế lại \(\Rightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}>\frac{a+b+c}{a+b+c}=1\)
chứng minh bất đẳng thức
\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}>2\)
với a,b,c là độ dài 3 cạnh của tam giác
bạn tham khảo ở câu hỏi tương tự nhé
tick mình đi
bạn nào giải được cho 100 tick nhá ( thách đó)
1)Chứng minh bất đẳng thức 1/15<1/2.3/4...99/100<1/10
2)Cho a,b,c là độ dài 3 cạnh của một tam giác
a)1/a+b-c+1/b+c-a+1/c+a-b>1/a+1/b+1/c
b)a.(b-c)^2+b.(c-a)^2+c.(c+b)^2>a^3+b^3+c^3
c)(a+b-c)(b+c-a)(c+a-b)<=abc
cho tam giác ABC có độ dài ba cạnh lần lượt là a, b , c . Biết 2p = a + b +
chứng minh rằng 1/p-a + 1/p-b + 1/p-c > hoặc bằng 2 ( 1/a + 1/b + 1/c )
dấu bằng trong bất đẳng thức trên xảy ra khi tam giác ABC có đặc điểm gì
C/m BĐT phụ: \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) (*) (x,y dương)
Ta có: \(\left(x-y\right)^2\ge0\)
\(\Leftrightarrow\)\(x^2-2xy+y^2\ge0\)
\(\Leftrightarrow\)\(x^2+y^2\ge2xy\)
\(\Leftrightarrow\)\(x^2+2xy+y^2\ge4xy\)
\(\Leftrightarrow\)\(\left(x+y\right)^2\ge4xy\)
\(\Leftrightarrow\)\(\frac{x+y}{xy}\ge\frac{4}{x+y}\)
\(\Leftrightarrow\)\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) (BĐT đã đc chứng minh)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y\)
ÁP dụng BĐT (*) ta có:
\(\frac{1}{p-a}+\frac{1}{p-b}\ge\frac{4}{p-a+p-b}=\frac{4}{2p-\left(a+b\right)}=\frac{4}{c}\) (1)
\(\frac{1}{p-b}+\frac{1}{p-c}\ge\frac{4}{p-b+p-c}=\frac{4}{2p-\left(b+c\right)}=\frac{4}{a}\) (2)
\(\frac{1}{p-c}+\frac{1}{p-a}\ge\frac{4}{p-c+p-a}=\frac{4}{2p-\left(c+a\right)}=\frac{4}{b}\) (3)
Lấy (1); (2); (3) cộng theo vế ta được:
\(2\left(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\right)\ge4\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(\Leftrightarrow\)\(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\) (đpcm)
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c\)
Khi đó \(\Delta ABC\)là tam giác đều