3\(\sqrt{x}+1=40\)
tìm x
Bài 74 (trang 40 SGK Toán 9 Tập 1)
Tìm $x$, biết:
a) $\sqrt{(2 x-1)^{2}}=3$;
b) $\dfrac{5}{3} \sqrt{15 x}-\sqrt{15 x}-2=\dfrac{1}{3} \sqrt{15 x}$.
a, \(\sqrt{\left(2x-1\right)^2}=3\Leftrightarrow\left|2x-1\right|=3\)
Với \(x\ge\frac{1}{2}\)pt có dạng : \(2x-1=3\Leftrightarrow x=2\)( tm )
Với \(x< \frac{1}{2}\)pt có dạng : \(-2x+1=3\Leftrightarrow x=-1\)( tm )
Vậy tập nghiệm của pt là S = { -1 ; 2 }
b, \(\frac{5}{3}\sqrt{15x}-\sqrt{15x}-2=\frac{1}{3}\sqrt{15x}\)ĐK : \(x\ge0\)
\(\Leftrightarrow\frac{2}{3}\sqrt{15x}-2=\frac{1}{3}\sqrt{15x}\Leftrightarrow\frac{1}{3}\sqrt{15x}=2\)
\(\Leftrightarrow\sqrt{15x}=6\)bình phương 2 vế : \(\Leftrightarrow15x=36\Leftrightarrow x=\frac{36}{15}=\frac{12}{5}\)( tm )
Vậy tập nghiệm của pt là S = { 12/5 }
a)
+) TH1:
+) TH2:
Vậy ; .
b) Điều kiện:
Vậy .
\(3\sqrt{x}+1=40\) tìm x
ĐKXĐ : x >= 0
pt => 3\(\sqrt{x}\) = 40 - 1 = 39
=> \(\sqrt{x}\) = 39 : 3 = 13
=> x = 169 (t/m ĐKXĐ)
Vậy x=169
Tk mk nha
\(\sqrt[3]{x}+1=40\)tìm X
căn bậc3 của x +1=40
căn bậc 3 của x=40-1=39
Suy ra x=39^3
Tìm x biết:\(3\sqrt{x}+1=40\)
Giúp mik nha!
X = 169
\(3\sqrt{x}+1=40\)
\(ĐKXĐ:x\ge0\)
\(pt\Leftrightarrow3\sqrt{x}=39\)
\(\Leftrightarrow\sqrt{x}=13\)
\(\Leftrightarrow x=169\)
tìm x biết
3\(\sqrt{x}+1=40\)
\(\sqrt{x}+1=40\Rightarrow\sqrt{x}=39\Rightarrow\left(\sqrt{x}\right)^2=39^2\Rightarrow x=1521\)
\(3\sqrt{x}+1=40\)
ĐK : x ≥ 0
<=> \(3\sqrt{x}=39\)
<=> \(\sqrt{x}=13\)
<=> \(x=169\)( tm )
Vậy x = 169
Tìm điều kiện của tham số m để hệ sau đây có nghiệm
\(\left\{{}\begin{matrix}x+\sqrt{x^2+16}\le\dfrac{40}{\sqrt{x^2+16}}\\x\left(x-2\right)\left(\sqrt{x^2+y^2+3}-1\right)+\left(x^3+x+m-2\right)^2=0\end{matrix}\right.\)
Giải các phương trình :
a) \(x=\sqrt{40-x}.\sqrt{45-x}+\sqrt{45-x}.\sqrt{72-x}+\sqrt{72-x}.\sqrt{40-x}\)
b) \(\sqrt{8x+1}+\sqrt{46-10x}=-x^3+5x^2+4x+1\)
40. B=\(\left(\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{2\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+9}{x-9}\right).\left(\dfrac{\sqrt{x}-2}{3}+1\right)\)
b. Rút gọn B
\(B=\dfrac{x-3\sqrt{x}+2x+6\sqrt{x}-3x-9}{x-9}\cdot\dfrac{\sqrt{x}-2+3}{3}\)
\(=\dfrac{-3\left(\sqrt{x}+3\right)}{x-9}\cdot\dfrac{\sqrt{x}+1}{3}=\dfrac{-\sqrt{x}-1}{\sqrt{x}-3}\)
40.A=\(\dfrac{2-5\sqrt{x}}{\sqrt{x}+1}\)
a. Tính giá trị của biểu thức A khi x=\(\sqrt{19+8\sqrt{3}}+\sqrt{19-8\sqrt{3}}\)
a: \(x=4+\sqrt{3}+4-\sqrt{3}=8\)
Khi x=8 thì \(A=\dfrac{2-5\cdot2\sqrt{2}}{2\sqrt{2}+1}=\dfrac{2-10\sqrt{2}}{2\sqrt{2}+1}=-6+2\sqrt{2}\)