Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Lan Anh
Xem chi tiết
Nguyễn Lan Anh
3 tháng 11 2021 lúc 19:32

nhanh giúp e với

 

Nguyễn Lan Anh
Xem chi tiết
Anime
Xem chi tiết
Linh
Xem chi tiết
Xem chi tiết

\(3x^2y-7y=5x^2-84\)

=>\(9x^2y-21y=15x^2-252\)

=> \(3x^2\left(3y-5\right)-7\left(3y-5\right)=-217\)

=> \(\left(3y-5\right)\left(3x^2-7\right)=\left(-7\right).31=7\left(-31\right)=1\left(-217\right)=217\left(-1\right)\)

Đến đây bạn tự lập bảng ra xét nhé

Nguyễn Minh Nhật
Xem chi tiết
Xyz OLM
25 tháng 7 2023 lúc 0:11

\(x^2+y^2+2\left(x+y\right)-xy=0\)

\(\Leftrightarrow4x^2-4xy+4y^2+8\left(x+y\right)=0\)

\(\Leftrightarrow\left(2x-y\right)^2+4\left(2x-y\right)+4+3y^2+12y+12=-16\)

\(\Leftrightarrow\left(2x-y+2\right)^2+3\left(y+2\right)^2=-16\)

Dễ thấy VT \(\ge0\) ; VP < 0 nên phương trình vô nghiệm 

Nguyễn Đức Trí
24 tháng 7 2023 lúc 23:19

\(x^2+y^2-2\left(x+y\right)=xy\)

\(\Rightarrow x^2-2x+1+y^2-2y+1=2+xy\)

\(\Rightarrow\left(x-1\right)^2+\left(y-1\right)^2=2+xy\)

Ta lại có : \(\left(x-1\right)^2+\left(y-1\right)^2\ge2\left(x-1\right)\left(y-1\right)\) (Bất đẳng thức Cauchy)

Nguyễn Đức Trí
24 tháng 7 2023 lúc 23:32

Tiếp tục phần tiếp theo

Dấu bằng xảy ra khi \(\left\{{}\begin{matrix}x=2\\y=2\end{matrix}\right.\)

\(\Rightarrow\left(x-1\right)^2+\left(y-1\right)^2=2+xy\) (vô lý vì 2=2+2.2)

⇒ Không có cặp (x;y) nguyên dương nào thỏa mãn đề bài

Nguyễn Thị Trúc Hà
Xem chi tiết
Nguyễn Thị Trúc Hà
Xem chi tiết
Nhóc_Siêu Phàm
Xem chi tiết