Chứng tỏ phân số 3n+2/5n+3 tối giản với mọi số tự nhiên n.
Chứng tỏ phân số \(\frac{3n+2}{5n+3}\)tối giản với mọi số tự nhiên n.
Với n chẵn ta thấy tử số phân số trên chẵn
Mà mẫu số lẻ
Nên hiển nhiên phân số trên tối giản
Với n lẻ, làm tương tự
thế VD là phân số \(\frac{6}{9}\)thì cx tối giản à bn ?
Gọi d là \(UCLN\left(3n+2;5n+3\right)\)
\(\Rightarrow\hept{\begin{cases}3n+2\\5n+3\end{cases}⋮d}\)
\(\Rightarrow\hept{\begin{cases}5\left(3n+2\right)\\3\left(5n+3\right)\end{cases}⋮d\rightarrow\hept{\begin{cases}15n+10\\15n+9\end{cases}⋮}d}\)
\(\Rightarrow15n+10-\left(15n+9\right)⋮d\)
=>\(1⋮d\Rightarrow d=1\)
=>p/s trên tối giản với mọi số tự nhiên n
Vậy....
Có gì chưa rõ mong mn chỉ bào thêm ạ
Chứng tỏ phân số \(\frac{3n+2}{5n+3}\)tối giản với mọi số tự nhiên n.
giúp mik với nha.
gọi d là Ưc(3n+2; 5n+3)
\(\Leftrightarrow\)\(\frac{3n+2}{5n+3}\)=\(\frac{15n+10}{15n+9}\)
\(\Rightarrow\)d\(⋮\)1\(\Rightarrow\)d=1
vậy \(\frac{3n+2}{5n+3}\)tối giản với mọi số tự nhiên n
Ta có \(\frac{3n+2}{5n+3}\) là phân số tối giản
\(\Rightarrow\) ƯCLN (3n+2; 5n+3) = 1.
Gọi ƯCLN (3n+2; 5n+3) là d.
\(\Rightarrow\) 3n+2 \(⋮\)d ; 5n+3 \(⋮\)d
\(\Rightarrow\) 5.(3n+2) \(⋮\)d ; 3.(5n+3) \(⋮\)d
\(\Rightarrow\) 15n+10 \(⋮\)d ; 15n+9 \(⋮\)d
\(\Rightarrow\) (15n+10)-(15n+9) \(⋮\)d
\(\Rightarrow\) 15n+10-15n-9 \(⋮\)d
\(\Rightarrow\) 1 \(⋮\)d
\(\Rightarrow\) d = 1.
Vậy ƯCLN (3n+2; 5n+3) = 1 \(\Leftrightarrow\)\(\frac{3n+2}{5n+3}\)tối giản.
_Chúc bạn học tốt_
chứng minh rằng phân số sau tối giản với mọi số tự nhiên n
\(\dfrac{3n+2}{5n+3}\)
Gọi ƯCLN(3n + 2, 5n + 3) = d (d thuộc N*)
Ta có:
3n + 2 chia hết cho d
5n + 3 chia hết cho d
<=> 5(3n + 2) chia hết cho d = (15n + 10) chia hết cho d
<=> 3(5n +3) chia hết cho d = (15n + 9) chia hết cho d
=> (15n + 10) - (15n + 9) chia hết cho d = 1 chia hết cho d
=> d = 1
=> 3n + 2 và 5n + 3 là hai số nguyên tố cùng nhau.
Vậy Phân số là phân số tối giản.
tự làm nha thấy đúng cho mik một like
Chứng tỏ rằng phân số sau tối giản với mọi n thuộc N:5n+3/3n+2
gọi UCLN(5n+3; 3n+2)=d khi đó 5n+3 chia hết cho d suy ra 15n+9 chia hết cho d (1)
3n+2 chia hết cho d nên 15n + 10 cũng chia hết cho d (2) ( dử dụng tính chất a chia hết cho m thì a.n cũng chia hết cho m)
từ 1 và 2 suy ra (15n+10)-(15n+9) chia hết cho d hay 1 chia hết cho d ( tính chất chia hết của 1 tổng- hiệu). vậy d=1
vậy UCLN(5n+3; 3n+2)=1 hay phân số trên tối giản
lưu ý: để chứng minh 1 phân số tối giản ta chứng minh UCLN của tử và mẫu bằng 1. còn trong tập Z ta cm UCLN = +-1
Giúp mình với ạ
Chứng tỏ rằng với mọi số tự nhiên n khác 0 thì các phân số sau là tối giản
5n+14/n+3
3n-2/4n-3
4n+1/6n+1
5n+3/3n+2
Cmt với mọi số tự nhiên n thì 5n+3/3n+2 là phân số tối giản
Lời giải:
Gọi $d=ƯCLN (5n+3, 3n+2)$
Khi đó:
$5n+3\vdots d$ và $3n+2\vdots d$
$\Rightarrow 5(3n+2)-3(5n+3)\vdots d$
$\Rightarrow 1\vdots d$
$\Rightarrow d=1$
Vậy $(5n+3, 3n+2)=1$
$\Rightarrow \frac{5n+3}{3n+2}$ là phân số tối giản.
chứng tỏ rằng các phân số sau tối giản với mọi số tự nhiên n:
a,n+3/n+4
b,3n+3/9n+8
c,4n+3/5n+4
d,n+1/2n+3
e,2n+3/4n+8
f, 3n+2/5n+3
giúp mình với
c) Gọi ƯCLN(4n + 3;5n+4) = d
=> \(\hept{\begin{cases}4n+3⋮d\\5n+4⋮d\end{cases}\Rightarrow\hept{\begin{cases}5\left(4n+3\right)⋮d\\4\left(5n+4\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}20n+15⋮d\\20n+16⋮d\end{cases}\Rightarrow}20n+16-\left(20n+15\right)⋮d\Rightarrow1⋮d}\)
=> d = 1
=> 4n + 3 ; 5n + 4 là 2 số nguyên tố cùng nhau
=> \(\frac{4n+3}{5n+4}\)là phân số tối giản
d) Gọi ƯCLN(n+1;2n + 3) = d
=> \(\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(n+1\right)⋮d\\2n+3⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}\Rightarrow}2n+3-\left(2n+2\right)⋮d\Rightarrow1⋮d\Rightarrow d=1}\)
=> n + 1 ; 2n + 3 là 2 số nguyên tố cùng nhau
=> \(\frac{n+1}{2n+3}\)là phân số tối giản
f) Gọi ƯCLN(3n + 2;5n + 3) = d
=> \(\hept{\begin{cases}3n+2⋮d\\5n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}5\left(3n+2\right)⋮d\\3\left(5n+3\right)⋮d\end{cases}\Rightarrow}\begin{cases}15n+10⋮d\\15n+9⋮d\end{cases}\Rightarrow15n+10-\left(15n+9\right)⋮d\Rightarrow1⋮d}\)
=> d = 1
=> 3n + 2 ; 5n + 3 là 2 số nguyên tố cùng nhau
=> \(\frac{3n+2}{5n+3}\)là phân số tối giản
a) Gọi ƯCLN(n + 3;n + 4) = d
=> \(\hept{\begin{cases}n+3⋮d\\n+4⋮d\end{cases}\Rightarrow n+4-\left(n+3\right)⋮d\Rightarrow1⋮d\Rightarrow d=1}\)
=> n + 3 ; n + 4 là 2 số nguyên tố cùng nhau
=> \(\frac{n+3}{n+4}\)là phân số tối giản
b) Gọi ƯCLN(3n + 3 ; 9n + 8) = d
Ta có : \(\hept{\begin{cases}3n+3⋮d\\9n+8⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(3n+3\right)⋮d\\9n+8⋮d\end{cases}}\Rightarrow\hept{\begin{cases}9n+9⋮d\\9n+8⋮d\end{cases}}\Rightarrow9n+9-\left(9n+8\right)⋮d\Rightarrow1⋮d\Rightarrow d=1}\)
=> 3n + 3 ; 9n + 8 là 2 số nguyên tố cùng nhau
=> \(\frac{3n+3}{9n+8}\)phân số tối giản
18. Chứng minh rằng các phân số sau là phân số tối giản với mọi số tự nhiên n:
a) \(\dfrac{n+1}{2n+3}\)
b) \(\dfrac{2n+3}{4n+8}\)
c) \(\dfrac{3n+2}{5n+3}\)
Gọi Ư(n+1;2n+3) = d ( \(d\in\)N*)
\(n+1=2n+2\left(1\right);2n+3\left(2\right)\)
Lấy (2 ) - (1) ta được : \(2n+3-2n+2=1⋮d\Rightarrow d=1\)
Vậy ta có đpcm
Gọi Ư\(\left(3n+2;5n+3\right)=d\)( d \(\in\)N*)
\(3n+2=15n+10\left(1\right);5n+3=15n+9\left(2\right)\)
Lấy (!) - (2) ta được : \(15n+10-15n-9=1⋮d\Rightarrow d=1\)
Vậy ta có đpcm
a) Gọi \(d\) là UCLN \(\left(n+1,2n+3\right)\left(d\in N\right)\)
Ta có : \(\left[{}\begin{matrix}n+1⋮d\\2n+3⋮d\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2n+2⋮d\\2n+3⋮d\end{matrix}\right.\)
\(\Rightarrow2n+3-\left(2n+2\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\left(đpcm\right)\)
b) Gọi \(d\) là \(UCLN\left(2n+3,4n+8\right)\left(d\in N\right)\)
Ta có : \(\left[{}\begin{matrix}2n+3⋮d\\4n+8⋮d\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}4n+6⋮d\\4n+8⋮d\end{matrix}\right.\)
\(\Rightarrow4n+8-\left(4n+6\right)⋮d\)
\(\Rightarrow2⋮d\)
\(\Rightarrow d\in\left\{1;2\right\}\)
Mà 2n+3 là số lẻ nên
\(\Rightarrow d=1\left(đpcm\right)\)
c) Gọi \(d\) là \(UCLN\left(3n+2;5n+3\right)\left(d\in N\right)\)
Ta có : \(\left[{}\begin{matrix}3n+2⋮d\\5n+3⋮d\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}15n+10⋮d\\15n+9⋮d\end{matrix}\right.\)
\(\Rightarrow15n+10-\left(15n+9\right)⋮d\)
\(\Rightarrow d=1\left(đpcm\right)\)
Chứng tỏ rằng với mọi số nguyên n, các phân số sau là phân số tối giản:
a) \(\dfrac{5n+3}{3n+2}\)
b) \(\dfrac{15n+1}{30n+1}\)
a: Gọi d=ƯCLN(15n+1;30n+1)
=>30n+2-30n-1 chia hết cho d
=>1 chia hết cho d
=>Đây là phân số tối giản
b: Gọi d=ƯCLN(3n+2;5n+3)
=>15n+10-15n-9 chia hết cho d
=>1 chia hết cho d
=>d=1
=>Phân số tối giản