Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyễn thiệu bảo châu
Xem chi tiết
Hà Thảo Vy
16 tháng 7 2018 lúc 19:33

mở dấu trị tuyệt đối ra rồi tính như bình thường

Trần Long Hưng
Xem chi tiết
Trần Ngọc Bảo Chi
Xem chi tiết
Nguyễn Huy Tú
11 tháng 2 2022 lúc 20:09

\(Q=-5\left|x+\frac{1}{2}\right|+2021\le2021\forall x\)

Dấu ''='' xảy ra khi x = -1/2 

Vậy GTLN của Q là 2021 khi x = -1/2 

\(C=\frac{5}{3}\left|x-2\right|+2\ge2\forall x\)

Dấu ''='' xảy ra khi x = 2 

Vậy GTNN của C là 2 khi x = 2 

Khách vãng lai đã xóa
Long_0711
Xem chi tiết
Phương Mai Trần
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 10 2021 lúc 21:36

Câu 2: 

\(C=-x+\sqrt{x}\)

\(=-\left(x-\sqrt{x}+\dfrac{1}{4}\right)+\dfrac{1}{4}\)

\(=-\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{4}\)

Huyền Lưu
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 7 2023 lúc 23:27

1:

a: =x^2-7x+49/4-5/4

=(x-7/2)^2-5/4>=-5/4

Dấu = xảy ra khi x=7/2

b: =x^2+x+1/4-13/4

=(x+1/2)^2-13/4>=-13/4

Dấu = xảy ra khi x=-1/2

e: =x^2-x+1/4+3/4=(x-1/2)^2+3/4>=3/4

Dấu = xảy ra khi x=1/2

f: x^2-4x+7

=x^2-4x+4+3

=(x-2)^2+3>=3

Dấu = xảy ra khi x=2

2:

a: A=2x^2+4x+9

=2x^2+4x+2+7

=2(x^2+2x+1)+7

=2(x+1)^2+7>=7

Dấu = xảy ra khi x=-1

b: x^2+2x+4

=x^2+2x+1+3

=(x+1)^2+3>=3

Dấu = xảy ra khi x=-1

 

Phạm Phương Linh
Xem chi tiết
Akai Haruma
30 tháng 7 2021 lúc 16:35

1.

$x(x+2)(x+4)(x+6)+8$

$=x(x+6)(x+2)(x+4)+8=(x^2+6x)(x^2+6x+8)+8$

$=a(a+8)+8$ (đặt $x^2+6x=a$)

$=a^2+8a+8=(a+4)^2-8=(x^2+6x+4)^2-8\geq -8$

Vậy $A_{\min}=-8$ khi $x^2+6x+4=0\Leftrightarrow x=-3\pm \sqrt{5}$

Akai Haruma
30 tháng 7 2021 lúc 16:36

2.

$B=5+(1-x)(x+2)(x+3)(x+6)=5-(x-1)(x+6)(x+2)(x+3)$

$=5-(x^2+5x-6)(x^2+5x+6)$

$=5-[(x^2+5x)^2-6^2]$

$=41-(x^2+5x)^2\leq 41$

Vậy $B_{\max}=41$. Giá trị này đạt tại $x^2+5x=0\Leftrightarrow x=0$ hoặc $x=-5$

Akai Haruma
30 tháng 7 2021 lúc 16:41

3.

Đặt $x+3=a; 7-x=b$ thì $a+b=10$ 

$C=a^4+b^4$

Áp dụng BĐT Bunhiacopxky:

$(a^4+b^4)(1+1)\geq (a^2+b^2)^2$

$\Rightarrow C\geq \frac{(a^2+b^2)^2}{2}$
$(a^2+b^2)(1+1)\geq (a+b)^2=100$

$\Rightarrow a^2+b^2\geq 50$

$\Rightarrow C\geq \frac{50^2}{2}=1250$

Vậy $C_{\min}=1250$

Giá trị này đạt tại $a=b=5\Leftrightarrow x=2$

 

 

Ngô Quang Đạt 1
Xem chi tiết
Minh
Xem chi tiết
Tô Mì
6 tháng 6 2023 lúc 1:55

Ta có : \(C=\dfrac{5-x^2}{x^2+3}\)

\(=\dfrac{-\left(x^2+3\right)+8}{x^2+3}=\dfrac{8}{x^2+3}-1\)

Ta sẽ có : \(x^2\ge0\Rightarrow x^2+3\ge3\Rightarrow\dfrac{8}{x^2+3}\le\dfrac{8}{3}\)

\(\Rightarrow C=\dfrac{8}{x^2+3}-1\le\dfrac{8}{3}-1=\dfrac{5}{3}\)

Vậy : \(MaxC=\dfrac{5}{3}\Leftrightarrow x=0.\)

Kiều Vũ Linh
6 tháng 6 2023 lúc 8:10

Để C lớn nhất thì x² + 3 nhỏ nhất

Ta có:

x² ≥ 0 với mọi x R

⇒ x² + 3 ≥ 3 với mọi x R

⇒ x² + 3 nhỏ nhất là 3 khi x = 0

⇒ max C = (5 - 0²)/(0² + 3) = 5/3