Cho dãy tỉ số bằng nhau: \(\frac{x}{2017}=\frac{y}{2016}=\frac{z}{2015}\). Chứng minh rằng: 2(z-y) mũ 2=(z-x)(z-y)
tìm x, y, z biết rằng: \(\frac{x^2}{2014}+\frac{y^2}{2015}+\frac{z^2}{2016}=\frac{x^2+y^2+z^2}{2017}\)
Cho dãy tỉ số bằng nhau \(\frac{x^2-yz}{a}=\frac{y^2-xz}{b}=\frac{z^2-xy}{c}\) . Chứng minh rằng \(\frac{a^2-bc}{x}=\frac{b^2-ac}{y}=\frac{c^2-ab}{z}\)
cho 3 số x, y, z khác 0 thõa mãn\(\hept{\begin{cases}x+y+z=2015\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{2015}\end{cases}}\)
Chứng minh rằng trong 3 số x, y, z tồn tại 2 số đối nhau
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{2015}\)
\(\Rightarrow\)\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\) (do x+y+z = 2015)
\(\Rightarrow\)\(\frac{xy+yz+xz}{xyz}=\frac{1}{x+y+z}\)
\(\Rightarrow\)\(\left(xy+yz+xz\right)\left(x+y+z\right)=xyz\)
\(\Rightarrow\)\(\left(xy+yz+xz\right)\left(x+y+z\right)-xyz=0\)
\(\Rightarrow\)\(\left(x+y\right)\left(y+z\right)\left(x+z\right)=0\)
đến đây tự lm nốt nha
1)
Cho 3 số x,y,z đôi một phân biệt thỏa mãn \(\frac{x}{2015}=\frac{y}{2016}=\frac{z}{2017}\)
Vậy (x-z)^3:((x-y)^2(y-z))
cho dãy tỉ số bằng nhau :$\frac{x}{y+z+t}$=$\frac{y}{z+t+x}$=$\frac{z}{t+x+y}$=$\frac{t}{x+y+z}$ cmr : "$\frac{x+y}{z+t}$=$\frac{y+z}{t+x}$=$\frac{z+t}{x+y}$=$\frac{t+z}{y+z}$"
Cho dãy tỉ số bằng nhau : \(\frac{x}{a+2b+c}=\frac{y}{2a+b-c}=\frac{z}{4a-4b+c}\). Chứng minh rằng:\(\frac{a}{x+2y+z}=\frac{b}{2x+y-z}=\frac{c}{4x-4y+z}\)
\(^{\frac{x^2}{2014}+\frac{y^2}{2015}+\frac{z^2}{2016}=\frac{x^2+y^2+z^2}{2017}}\)
tìm x, y, z
Cho dãy tỉ số bằng nhau \(\frac{x}{3} = \frac{y}{4} = \frac{z}{5}\). Tìm ba số x,y,z biết:
a) x+y+z = 180; b) x + y – z = 8
a: Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{x+y+z}{3+4+5}=\dfrac{180}{12}=15\)
=>x=45; y=60; z=75
b:
Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{x+y-z}{3+4-5}=\dfrac{8}{2}=4\)
=>x=12; y=16; z=20
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
a) \(\frac{x}{3} = \frac{y}{4} = \frac{z}{5} = \frac{{x + y + z}}{{3 + 4 + 5}} = \frac{{180}}{{12}} = 15\)
Vậy x = 3 . 15 = 45; y = 4 . 15 = 60; z = 5 . 15 = 75
b) \(\frac{x}{3} = \frac{y}{4} = \frac{z}{5} = \frac{{x + y - z}}{{3 + 4 - 5}} = \frac{8}{2} = 4\)
Vậy x = 3. 4 = 12; y = 4.4 = 16; z = 5.4 = 20
Tìm X,Y,Z biết:
\(\frac{x+y+2005}{z}=\frac{y+2-2006}{x}=\frac{z+x+1}{y}=\frac{2}{x+y+z}\)
Áp dụng dãy tỉ số bằng nhau