Tìm nϵN để :
\(n^2+3n+5:n+1\)
Tìm n để : 3n+1/2n+3 là phân số tối giản (nϵN)
Tìm nϵN sao cho 5 . ( 3n-1)+3⋮(2n*-5)
An và Bình cùng đếm số trái cây mình có, An nói: “Nếu cậu cho mình 4 trái thì 2 tụi mình sẽ có số trái cây bằng nhau”. Bình nói lại với An: “Còn nếu cậu cho mình 2 trái thì số trái cây của tớ sẽ gấp 4 lần cậu”. Hỏi mỗi bạn có bao nhiêu trái
Tìm nϵN biết 1≥ 3n +2 ≤ 729
\(1\le3^{n+2}\le729\)
\(\Rightarrow3^0\le3^{n+2}\le3^6\)
\(\Rightarrow0\le n+2\le6\)
\(\Rightarrow0-2\le n\le6-2\)
\(\Rightarrow-2\le n\le4\)
Mà: \(n\in N^+\)
\(\Rightarrow0\le n\le4\)
\(\Rightarrow n\in\left\{0;1;2;3;4\right\}\)
Sửa đề:
1 ≤ 3ⁿ⁺² ≤ 729
3⁰ ≤ 3ⁿ⁺² ≤ 3⁶
0 ≤ n + 2 ≤ 6
-2 ≤ n ≤ 4
Do n ∈ ℕ
⇒ n ∈ {0; 1; 2; 3; 4}
Tìm nϵN để tổng 1!+2!+3!+.....+n! là 1 số chính phương
Tìm nϵN sao cho 15n-3⋮(3n-2)
Ta có:
15n - 3 = 15n - 10 + 7 = 5(3n - 2) + 7
Để (15n - 3) ⋮ (3n - 2) thì 7 ⋮ (3n - 2)
⇒ 3n - 2 ∈ Ư(7) = {-7; -1; 1; 7}
⇒ 3n ∈ {-5; 1; 3; 9}
⇒ n ∈ {-5/3; 1/3; 1; 3}
Mà n ∈ ℕ
⇒ n = 1; n = 3
Tìm nϵN sao cho 12n-3⋮(3n-2)
Lời giải:
$12n-3\vdots 3n-2$
$\Rightarrow 4(3n-2)+5\vdots 3n-2$
$\Rightarrow 5\vdots 3n-2$
$\Rightarrow 3n-2\in\left\{1; -1;5;-5\right\}$
$\Rightarrow n\in\left\{1; \frac{1}{3}; \frac{7}{3}; -1\right\}$
Vì $n\in\mathbb{N}$ nên $n=1$
Ta có:
12n - 3 = 12n - 8 + 5 = 4(3n - 2) + 5
Để (12n - 3) ⋮ (3n - 2) thì 5 ⋮ (3n - 2)
⇒ 3n - 2 ∈ Ư(5) = {-5; -1; 1; 5}
⇒ 3n ∈ {-3; 1; 3; 7}
⇒ n ∈ {-1; 1/3; 1; 7/3}
Mà n ∈ ℕ
⇒ n = 1
chứng minh rằng 2n+5 và 3n+7 (nϵN)là hai số nguyên tố cùng nhau
gọi ƯC(2n+5 và 3n+7) = d
3(2n+5) , 2(3n+7) chia hết cho d
-> [3(2n+5) - 2(3n+7)] chia hết cho d
-> 1 chia hết cho d
d = 1 -> 2n +5 và 3n+7 nguyên tố cùng nhau
B=3n^2+3n+5/n+1.Hãy tìm số nguyên n để B là số nguyên
1.a)Chứng tỏ rằng:\(\dfrac{2n+5}{n+3}\)(nϵN) là phân số tối giản.
b)Tìm các giá trị nguyên của n để phân số B=\(\dfrac{2n+5}{n+3}\) có giá trị là số nguyên.
2.Ở lớp 6A,số học sinh giỏi học kì I bằng \(\dfrac{3}{7}\) số còn lại.Cuối năm có thêm 4 học sinh đạt loai giỏi bằng \(\dfrac{2}{3}\) số còn lại.Tính số học sinh của lớp 6A ?
1. a) Gọi a là ƯCLN của 2n+5 và n+3.
- Ta có: (n+3)⋮a
=>(2n+6)⋮a
Mà (2n+5)⋮a nên [(2n+6)-(2n+5)]⋮a
=>1⋮a
=>a=1 hay a=-1.
- Vậy \(\dfrac{2n+5}{n+3}\) là phân số tối giản.
b) -Để phân số B có giá trị là số nguyên thì:
\(\left(2n+5\right)⋮\left(n+3\right)\)
=>\(\left(2n+6-1\right)⋮\left(n+3\right)\)
=>\(-1⋮\left(n+3\right)\).
=>\(n+3\inƯ\left(-1\right)\).
=>\(n+3=1\) hay \(n+3=-1\).
=>\(n=-2\) (loại) hay \(n=-4\) (loại).
- Vậy n∈∅.
1. a) Gọi `(2n +5 ; n + 3 ) = d`
`=> {(2n+5 vdots d),(n+3 vdots d):}`
`=> {(2n+5 vdots d),(2(n+3) vdots d):}`
`=> {(2n+5 vdots d),(2n+6 vdots d):}`
Do đó `(2n+6) - (2n+5) vdots d`
`=> 1 vdots d`
`=> d = +-1`
Vậy `(2n+5)/(n+3)` là phân số tối giản
b) `B = (2n+5)/(n+3)` ( `n ne -3`)
`B = [2(n+3) -1]/(n+3)`
`B= [2(n+3)]/(n+3) - 1/(n+3)`
`B= 2 - 1/(n+3)`
Để B nguyên thì `1/(n+3)` có giá trị nguyên
`=> 1 vdots n+3`
`=> n+3 in Ư(1) = { 1 ; -1}`
+) Với `n+3 =1 => n = -2`(thỏa mãn điều kiện)
+) Với `n+ 3 = -1 => n= -4` (thỏa mãn điều kiện)
Vậy `n in { -2; -4}` thì `B` có giá trị nguyên
2. Gọi số học sinh giỏi kì `I` của lớp `6A` là `x` (` x in N **`)(học sinh)
Số học sinh còn lại của lớp `6A` là : `7/3 x` (học sinh)
Số học sinh giỏi của lớp `6A` cuối năm là: `x+4` (học sinh)
Cuối năm số học sinh còn lại của lớp `6A` là: `3/2 (x+4)` (học sinh)
Vì số học sinh của lớp `6A` không đổi nên ta có :
`7/3x + x = 3/2 (x+4) + x+4`
`=> 10/3 x = 3/2 x + 6 + x + 4`
`=> 10/3 x - 3/2 x -x = 10 `
`=> 5/6x = 10`
`=> x=12` (thỏa mãn điều kiện)
`=>` Số học sinh giỏi kì `I` của lớp `6A` là `12` học sinh
`=>` Số học sinh còn lại của lớp `6A` là : `12 . 7/3 =28` học sinh
`=>` Số học sinh của lớp `6A` là : `28 + 12 = 40` (học sinh)
Vậy lớp `6A` có `40` học sinh