CMR:(2^2/5.7+2^2/7.9+2^2/9.11+...+2^2/53.55)<1
Giúp mk nha:)
Mai nộp rùi]
a,2/5.7 + 2/7.9 + 2/9.11 + ... + 2/53.55
b,1/2 .1/3 +1/4 . 1/5 + ... + 1/8 . 1/9
c,(1+1/2)(1+1/3)(1=1/4).....(1+1/99)
\(\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right)\left(1+\frac{1}{4}\right).....\left(1+\frac{1}{99}\right)\)
\(=\left(\frac{2}{2}+\frac{1}{2}\right)\left(\frac{3}{3}+\frac{1}{3}\right)\left(\frac{4}{4}+\frac{1}{4}\right).....\left(\frac{99}{99}+\frac{1}{99}\right)\)
\(=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}.....\frac{100}{99}\)
\(=\frac{3.4.5....100}{2.3.4....99}=\frac{100}{2}=50\)
\(\dfrac{2}{3.5}+\dfrac{2}{5.7}\dfrac{2}{7.9}+.........+\dfrac{2}{99.101}\)
\(P=\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+\dfrac{2}{9.11}+\dfrac{2}{11.13}+\dfrac{2}{13.15}\)
Đặt A=\(\dfrac{2}{3.5}.\dfrac{2}{7.9}.....\dfrac{2}{99.101}\)
A=\(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\)
A=\(\dfrac{1}{3}-\dfrac{1}{101}=\dfrac{98}{303}\)
Ta có: \(P=\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+\dfrac{2}{7\cdot9}+\dfrac{2}{9\cdot11}+\dfrac{2}{11\cdot13}+\dfrac{2}{13\cdot15}\)
\(=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{13}-\dfrac{1}{15}\)
\(=\dfrac{1}{3}-\dfrac{1}{15}\)
\(=\dfrac{4}{15}\)
Câu 1:
\(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{99.101}\)
= \(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{99}-\dfrac{1}{101}\)
= \(\dfrac{1}{3}-\dfrac{1}{101}\)
= \(\dfrac{98}{303}\)
Câu 2 làm tương tự ở câu 1 nhé
Tính:
a) M=2/3.5+2/5.7+2/7.9+...+2/97.99
b) N=3/5.7+3/7.9+3/9.11+...+3/197.199
a.
\(M=1.\left[\frac{1}{3}-\frac{1}{5}+.....\frac{1}{97}-\frac{1}{99}\right]\)
\(M=\frac{1}{3}-\frac{1}{99}=\frac{32}{99}\)
b.
\(N=\frac{3}{2}.\left[\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{197}-\frac{1}{199}\right]\)
\(N=\frac{3}{2}.\left[\frac{1}{5}-\frac{1}{199}\right]=\frac{291}{995}\)
mk đầu tiên nha bạn
Thực hiện phép tính:
J) \(\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{53.55}\)
Ta có:
\(\dfrac{2}{5.7}=\dfrac{7-5}{5.7}=\dfrac{1}{5}-\dfrac{1}{7}\)
\(\dfrac{2}{7.9}=\dfrac{9-7}{7.9}=\dfrac{1}{7}-\dfrac{1}{9}\)
..........
\(\dfrac{2}{53.55}=\dfrac{55-53}{53.55}=\dfrac{1}{53}-\dfrac{1}{55}\)
\(\Rightarrow\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{53.55}=\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{5}+...+\dfrac{1}{53}-\dfrac{1}{55}=\dfrac{1}{5}-\dfrac{1}{55}=\dfrac{10}{55}=\dfrac{2}{11}\)
\(=\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{53}-\dfrac{1}{55}=\dfrac{1}{5}-\dfrac{1}{55}=\dfrac{2}{11}\)
S=2/5.7+2/7.9+2/9.11+.........+2/93.95
Bg
Ta có: S = \(\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+...+\frac{2}{93.95}\)
=> S = \(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+...+\frac{1}{93}-\frac{1}{95}\)
=> S = \(\frac{1}{5}-\frac{1}{95}\)
=> S = \(\frac{19}{95}-\frac{1}{95}\)
=> S = \(\frac{18}{95}\)
Vậy S = \(\frac{18}{95}\)
\(S=\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+\frac{2}{9\cdot11}+...+\frac{2}{93\cdot95}\)
\(S=\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+...+\frac{1}{93}-\frac{1}{95}\)
\(S=\left(\frac{1}{5}-\frac{1}{95}\right)+\left(\frac{-1}{7}+\frac{1}{7}\right)+\left(\frac{-1}{9}+\frac{1}{9}\right)+...+\left(\frac{-1}{93}+\frac{1}{93}\right)\)
\(S=\left(\frac{1}{5}-\frac{1}{95}\right)\)
\(S=\frac{19}{95}-\frac{1}{95}\)
\(S=\frac{18}{95}\)
Bài làm :
Ta có:
\(S=\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+...+\frac{2}{93.95}\)
\(S=\frac{7-5}{5.7}+\frac{9-7}{7.9}+\frac{11-9}{9.11}+...+\frac{95-93}{93.95}\)
\(S=\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+...+\frac{1}{93}-\frac{1}{95}\)
\(S=\frac{1}{5}-\frac{1}{95}\)
\(S=\frac{18}{95}\)
\(\text{Vậy S =}\frac{18}{95}\)
Chúc bạn học tốt !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
tính tổng S=2/1.3+2/3.5+2/5.7+2/7.9+2/9.11
\(S=\dfrac{2}{1\times3}+\dfrac{2}{3\times5}+\dfrac{2}{5\times7}+\dfrac{2}{7\times9}+\dfrac{2}{9\times11}\)
\(=\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{11}\)
\(=\dfrac{1}{1}-\dfrac{1}{11}=\dfrac{11}{11}-\dfrac{1}{11}=\dfrac{10}{11}\)
Tinh nhanh:
S = 2/5.7 + 2/7.9+ 2/9.11+...+2/93.95
\(S=\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+\frac{2}{9\cdot11}+..............+\frac{2}{93\cdot95}\)
\(=\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+............+\frac{1}{93}-\frac{1}{95}\)
\(=\frac{1}{5}-\frac{1}{95}\)
S = 2/5.7+ 2/7.9+...+2/93.95
=1/5-1/7+1/7-1/9+1/11+...+1/93+1/95
=1/5-1/95
=19/95-1/95
=18/95
4/5.7+4/7.9+4/9.11+...+4/53.55 = ?
\(=4\left(\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}+...+\frac{1}{53.55}\right)\)
\(=4\left(\frac{1}{5}-\frac{1}{5}+\frac{1}{7}-\frac{1}{7}+...+\frac{1}{53}-\frac{1}{55}\right)\)
\(=4\left(\frac{1}{5}-\frac{1}{55}\right)\)
\(=4.\frac{2}{11}\)
\(=\frac{8}{11}\)
a) M = 2/3.5 + 2/5.7 + 2/7.9 + ... + 2/97.99
b) N = 3/5.7 + 3/7.9 + 3/9.11 + ... + 3/197.199
c) P = 1/1.2 + 2/2.4 + 3/4.7 + ... + 10/46.56