Cho tam giác ABC vuông cân tại A. Lấy I tùy ý trên AB. Kẻ Bx vuông góc CI tại D, cắt CA tại M. Chứng minh CA>\(\frac{CD+DB}{2}\)
Cho tam giác ABC vuông cân tại A. Lấy điểm I tùy ý trên cạnh AB. Kẻ tia Bx vuông góc với CI tại D, cắt tia CA tại M. Chứng minh:
a) MA*MC = MD*MB.
b) Góc ADM = 45°.
c) BI*BA + CI*CD không đổi khi I chạy trên AB.
d) CA > (CD+DB/2)
cho tam giác ABC vuông tại A, AB<AC. lấy điểm D sao cho A là trung điểm của BD
a) chứng minh CA là tia phân giác của góc BCD
b) vẽ BE vuông góc với CD tại E, BE cắt CA tại I. Vẽ IF vuông góc với CB tại F. chứng minh tam giác CEF cân và EF song song với DB
c) so sánh IE và IB
d) tìm điều kiện của tam giác DBC để tam giác BEF cân tại F
a: Xet ΔCBD có
CA vừa là đường cao, vừa là trung tuyến
=>ΔCBD cân tại C
=>CA là phân giác củagóc BCD
b: Xét ΔCEI vuông tại E và ΔCFI vuông tại F có
CI chung
góc ECI=góc FCI
=>ΔCEI=ΔCFI
=>CE=CF
=>ΔCEF cân tạiC
Xet ΔCDB có CE/CD=CF/CB
nên EF//DB
c: IE=IF
IF<IB
=>IE<IB
Cho tam giác ABC vuông tại A có góc B =30° .
a, Tính góc C.
b, vẽ tia phân giác của góc C cắt cạnh AB tại D.
c, trên cạnh CB lấy điểm M sao cho CM=CA . Chứng minh: tam giác ACD = tam giác MCD.
d,qua C vẽ đường thẳng xy vuông góc tại CA . Từ A kẻ đường thẳng song song với CD cắt xy tại J . Chứng minh : AK=CD.
c,tính góc AKC
a: \(\widehat{C}=90^0-30^0=60^0\)
c: Xét ΔCAD và ΔCMD có
CA=CM
\(\widehat{ACD}=\widehat{MCD}\)
CD chung
Do đó: ΔCAD=ΔCMD
Cho tam giác ABC vuông tại A có góc B =30° .
a, Tính góc C.
b, vẽ tia phân giác của góc C cắt cạnh AB tại D.
c, trên cạnh CB lấy điểm M sao cho CM=CA . Chứng minh: tam giác ACD = tam giác MCD.
d,qua C vẽ đường thẳng xy vuông góc tại CA . Từ A kẻ đường thẳng song song với CD cắt xy tại J . Chứng minh : AK=CD.
c,tính góc AKC
a,b)
c) Vì CD là tia phân giác của \(\widehat{C}\) nên \(\widehat{ACD}=\widehat{MCD}=\frac{60}{2}=30\)*
Xét ΔACD và ΔMCD, ta có:
CA=CM (gt)
\(\widehat{ACD}=\widehat{MCD}=30\)* (cmt)
Chung cạnh CD
Do đó: ΔACD = ΔMCD (c.g.c)
d) Mk sửa lại đề là cắt xy tại K bạn nhé !!!
Vì AK || DC nên \(\widehat{ACD}=\widehat{CAK}=30\)* (So le trong)
Xét ΔDAC va ΔKCA, ta có:
\(\widehat{ACD}=\widehat{CAK}=30\)* (cmt)
Chung cạnh AC
\(\widehat{DAC}=\widehat{KCA}=90\)*
Do đó: ΔDAC = ΔKCA (g.c.g)
=> AK=CD (2 cạnh tương ứng).
e) Trong ΔAKC có: \(\widehat{CAK}+\widehat{AKC}+\widehat{KCA}=180\)*
\(\Rightarrow\widehat{AKC}=180-\left(\widehat{CAK}+\widehat{KCA}\right)\)
\(\Rightarrow\widehat{AKC}=180-\left(30+90\right)\)
\(\Rightarrow\widehat{AKC}=60\)*
Cho tam giác ABC cân tại A. Trên cạnh BC lấy D , trên tia đối của tia CB lấy E sao cho BD=CE . Qua Đ kẻ đường thẳng vuông góc BC cắt AM tại M. Qua E kẻ đường thẳng vuông góc với BC cắt AC tại N.
A) chứng minh MD=NE
B) Gọi I là giao điểm của MN,BC , chứng minh I là trung điểm MN
C) Đường thẳng vuông góc với MN, kẻ qua I cắt tia phân giác của góc BAC tại O. Chứng minh tam giác OBM = tam giác OCN
a) ta có tam giác abc cân tại A suy ra B=C3
C3=C1(2 góc đđ) suy ra B=C1
xét 2 tam giác vuông MBD và NCE
B=C1(cmt)
BD=CE(gt)
D1=E=90 độ
suy ra tam giácMBD=NCE(g.c.g)
suy ra MD=NE
b) theo câu a, ta có:MD=NE
I1=I2(2 góc đđ)
DMI=90-I1
ENI=90-I2
suy ra DMI=ENI
xét tam giác MDI và tam giác NIE
MD=NE( theo câu a)
DMI=ENI(cmt)
MDI=NEI=90
suy ra tam giác MDI=NIE(g.c.g)
suy ra IM=IN suy ra I là trung điểm của MN
Cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm E. Trên tia đối của tia CA lấy điểm F sao cho BE = CF. Nối È cắt BC tại O. Kẻ EI song song với AF ( I thuộc BC )
d) chứng minh tam giác BEI là tam giác cân.
b) chứng tỏ OE = OF.
c) đường thẳng qua B và vuông góc với BA cắt đường thẳng qua C và vuông góc với AC tại O. CHỨNG tỏ tam giác EKF là tam giác cân và OK vuông góc với EF.
Cho tam giác ABC cân tại A, vẽ trung tuyến AM, từ M kẻ ME vuông góc với AB tại E, kẻ MF vuông góc với AC tại F.
a, Chứng minh: tam giác BEM = tam giác CFM
b, Chứng minh AM là trung trực của EF
c, Từ B kẻ đường thẳng BH vuông góc với AC tại H, từ C kẻ đường thẳng CI vuông góc với AB tại I, hai đường này cắt nhau tại D. Chứng minh: A, M, D thẳng hàng
Cho tam giác ABC cân ( AB=AC; góc A tù ). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy E sao choBD=CE. Trên tia đối của CA lấy điểm I sao cho CI=CA.
a) Chứng minh: AB+AC < AD+AE
b) Từ D và E kẻ các đường thẳng cùng vuông góc với BC cắt AB; AI theo thứ tự tại M;N. Chứng minh BM=CN.
c) Chứng minh rằng chu vi tam giác ABC nhỏ hơn chu vi tam giác AMN.
Cho tam giác ABC cân tại A, AD là trung tuyến. Từ D kẻ DE vuông góc với AB, DF vuông góc với AC
a, Chứng minh tam giác BED = tam giác CFD
b, Chứng minh AD là trung trực của EF
c, Từ B kẻ đoạn thẳng vuông góc AB tại B, từ C kẻ đoạn thẳng vuông góc AC tại C hai đoạn thẳng cắt nhau tại I. Chứng minh A, D, I thẳng hàng
d,Cho AB= 20cm, CI= 30cm. Tính DE