CTR:46^n+296.13^n chia het cho 33
Ch/minh 46n+296.13n chia hết cho 1947 với n thuộc N, n lẻ , n > hoặc = 1
46^n + 296*13^n = (46^n - 13^n) + 297*13^n = (46 - 13)*A + 9*33*13^n = 33*(A + 9*13^n) chia hết cho 33
46^n + 296*13^n = (46^n + 13^n) + 295*13^n = (46 + 13)*B + 59*5*13^n = 59*(B + 5*13^n) chia hết cho 59
Do 33 và 59 nguyên tố cùng nhau nên 46^n + 296*13^n chia hết cho 33*59 = 1947
Cmr: 46n+296.13n chia hết cho 1947 (n là số lẻ,n thuộc N* và n lớn hơn 1)
Chứng minh rằng P=49n+296.13n chia hết cho 33 với mọi thuộc N
1.Cmr 46n+296.13n chia hết cho 1947 với n >0,n thuộc N,n lẻ
2.Cmr 22n(22n+1-1)-1 chia hết cho 9 với n thuộc N*
Cho n là số tự nhiên lẻ. Chứng minh 46n+296.13n chi hết cho 1947
Ta có:
\(46^n+296.13^n\\ =46^n-13^n+297.13^n\\ =\left(46-13\right).X+9.33.13^n\\ =33.\left(X+9.13^n\right)⋮33\left(1\right)\)
Lại có:
\(46^n+296.13^n\\ =46^n+13^n+295.13^n\\ =\left(46+13\right).Y+59.5.13^n\\ =59.\left(Y+5.13^n\right)⋮59\left(2\right)\)
Mà 59 và 33 là 2 số nguyên tố cùng nhau (3)
Từ (1);2 và (3)\(\Rightarrow\)biểu thức trên chia hết cho:59.33=1947 (đpcm)
1)CTR voi moi STN n thi A=16^n-15n-1 chia het cho 15.
1.Xác định các hệ số a và b để đa thức x3+ax+b chia het cho (x-1)2
2.CTR: n3+ 3n2- n- 3 chia het cho 48 với n lẻ
bài 1:vì x^3 + ax + b chia hết cho (x-1)^2 nên khi nhóm nhân tử chung lại thì x^3 + ax + b có dạng:
(x-1)^2(mx + n)
nhân phá ra bạn sẽ có(x^2 -2x + 1)(mx + n) = m.x^3 + n.x^2 - 2m.x^2 - 2n.x + m.x + n
= m.x^3 + x^2 (n -2m) + x(m -2n) + n
vì nó có dạng x^3 + ax + b nên ta sẽ có: m = 1
và n -2m = 0
hay n -2 = 0
hay n =2.
suy ra đa thức sẽ bằng:
x^3 -3x + 2
từ đó suy ra a = -3 và b = 2.
bài 2:bạn nhận thấy : n^3 + 3n^2 - n - 3 = n^2(n+3) - (n+3) = (n-1)(n+1)(n+3)
vì n lẻ => n -1 là số chẵn
n +1 là số chẵn
n + 3 là số chẵn
đặt n-1 = a ( a chẵn) suy ra ta có:
a(a +2)(a+4)
bạn thấy a(a +2)(a+4) là tích 3 số chẵn liên tiếp nên chia hết cho 48 (bạn có thể tự biện luận từ số 48 = 2.4.6 là tích 3 số chẵn liên tiếp nhỏ nhất không chứa 0 nên suy ra tích 3 số chẵn liên tiếp luôn chia hết cho 48)
suy ra a(a+2)(a+4) chia hết cho 48.
suy ra (n-1)(n+1)(n+3) chia hết cho 48
suy ra n^3 + 3n^2 - n - 3 luôn chia hết cho 48 với n lẻ (đpcm)
1.Xác định các hệ số a và b để đa thức x3+ax+b chia het cho (x-1)2
2.CTR: n3+ 3n2- n- 3 chia het cho 48 với n lẻ
CTR ; voi moi n thi ( n+ 3 ).( n +2) chia het cho 2
lam on giup mk nhe
Tớ nghĩ là phải có thêm điều kiện gì của n chứ.
Vì n+2 và n+3 là 2 số liên tiếp nên (n+2)(n+3) chia hết cho 2 và 3.
Vậy....