chứng minh ∀n∈N* Thì \(n^3+n+2 \)là hợp số
Chứng minh \(\forall n\inℕ^∗\) thì \(n^3+n+2\) là hợp số
\(P=n^3+n+2\)
\(=\left(n^3+1\right)+\left(n+1\right)\)
\(=\left(n+1\right).\left(n^2-n+1\right)+n+1\)
\(=\left(n+1\right).\left(n^2-n+2\right)\)
Nhận thấy với \(n\inℕ^∗\Rightarrow n+1>0;n^2-n+2>0\)
nên P là hợp số
chứng minh rằng với mọi n thuộc N* thì n^3 +n+2 là hợp số
n3 + n + 2
= n3 - n + 2n + 2
= n.(n2 - 1) + 2.(n + 1)
= n.(n - 1).(n + 1) + 2.(n + 1)
= (n + 1).(n2 - n + 2), có ít nhất 3 ước khác 1
=> n3 + n + 2 là hợp số với mọi n ϵ N* (đpcm)
Có: n3 + n + 2 = n(n2+1) + 2
- Nếu n lẻ => n2 lẻ => n2 + 1 chẵn => n2 + 1 chia hết cho 2 => n(n2+1) chia hết cho 2
Mà n(n2+1) + 2 > 2 => n(n2+1) + 2 là hợp số => n3 + n + 2 là hợp số (1)
- Nếu n chẵn => n(n2+1) chia hết cho 2 => n(n2+1) + 2 chia hết cho 2
Mà n(n2+1) + 2 > 2 => n(n2+1) + 2 là hợp số => n3 + n + 2 là hợp số (2)
Từ (1) và (2) => n3 + n + 3 là hợp số với mọi n \(\in\) N*
chứng minh rằng với mọi n thuộc N* thì n^3 +n+2 là hợp số
Ta có
n3 + n + 2 = (n + 1)(n2 - n + 2)
Ta thấy ( n + 1) > 1
n2 - n + 2 > 1
Vậy n3 + n + 2 luôn chia hết cho 2 số khác 1 nên nó là hợp số
1. Chứng minh rằng với mọi số tự nhiên n thì ƯCLN(21 4;14 3) 1 n n
2. Chứng minh rằng: Nếu p là số nguyên tố lớn hơn 3 và 2 1 p cũng là số nguyên tố thì 4 1 p
là hợp số?
chứng minh với mọi n là số tự nhiên khác 0 thì n3 + n + 2 là hợp số
Ta có :
n3 + n + 2 = ( n3 + 1 ) + ( n + 1 )
= ( n + 1 ) ( n2 - n + 1 ) + ( n + 1 )
= ( n + 1 ) ( n2 - n + 2 )
Ta thấy n + 1 > 1 ; n2 - n + 2 > 1 nên n3 + n + 2 là hợp số
Do n là số tự nhiên khác 0 =) n = 2k hoặc 2k + 1 với k là stn
(+) Nếu n = 2k =) n^3 + n + 2 = (2k)^3 + 2k + 2 chia hết cho 2 (1)
(+) Nếu n = 2k + 1 =) n^3 + n + 2 = lẻ + lẻ +chẵn = chẵn chia hết cho 2 (2)
Từ (1) và (2) ta có điều phải chứng minh
Chứng minh với mọi n thuộc N* thì \(n^3+n+2\)
là hợp số
cái này lớp 6 cũng làm dc mak bạn.
Với n là số chẵn nên \(n^3+n\) là số chẵn suy ra \(n^3+n+2\) là số chẵn nên là hợp số vì n là số tự nhiên khác 0
Với n là số lẻ nên \(n^3\) là số lẻ nên \(n^3+n\) là số chẵn suy ra \(n^3+n+2\) là số chẵn nên là hợp số vì n là số tự nhiên khác 0
Vậy với mọi n là số tự nhiên khác 0 thì \(n^3+n+2\) là hợp số
\(n^3+n+2=n^3-n+2n+2=n\left(n-1\right)\left(n+1\right)+2\left(n+1\right)=\left(n+1\right)\left(n^2-n+2\right)\)
Vì n thuộc N* nên n+1 > 1, n2-n+2 > 1 => dpdcm
Chứng minh rằng với mọi n thì n^3+n+2 là hợp số.
Đề sai nhé vì nếu n = 0 thì n3 + n + 2 = 2 là số nguyên tố nhé, n = 1 thì tổng đó = 3 cũng là số nguyên tố nhé
chứng minh rằng nêu n là hợp số thì 2^n-1 là hợp số
Chứng minh nếu n là hợp số thì 2^n _1 cũng là hợp số