cho S= 1/2^2+1/3^2+1/4^2+.....+1/9^2
c/m 2/5<s<8/9
BÀI 3*
a.Cho S=1/31+1/32+1/33+...+1/60 . Chứng minh rằng 3/5<S<4/5
b. Cho M =1/2^2+1/3^2+1/4^2+...+1/9^2. Chứng minh rằng 2/5<S<8/9
CÁC BẠN GIÚP MÌNH VỚI
BẠN NÀO NHANH MÌNH TICK CHO!
1: \(A=\left(\dfrac{4x-x^3}{1-4x^2}-x\right):\left(\dfrac{4x^2-x^4}{1-4x^2}+1\right)\)
a, Tìm tập xác định và rút gọn A
b, x = ? để A>0, A<0
2: Tìm a, b để \(x^4+ax^3+b⋮x^2-1\) (lưu ý: chứng mình bằng 2 phương pháp)
3: Rút gọn \(\dfrac{\sqrt{12}-\sqrt{27}-\sqrt{48}}{1-\sqrt{5}+9\sqrt{9-4\sqrt{5}}}\)
4: Cho 2a, 3b, 4c tỉ lệ thuận với 3; 4; 5 và a - b + 2c = 1. Tính 2a + b - 3c
5: Cho 2a, 3b, 4c tỉ lệ ngược với 3; 4; 5 và a - b + 2c = 1. Tính 2a + b - 3c
6: Cho x + y + z = 1. Tìm min K = \(x^2+y^2+z^2\)
Bài 2:
Để \(x^4+ax^3+b\vdots x^2-1\) thì \(x^4+ax^3+b\) phải được viết dưới dạng :
\(x^4+ax^3+b=(x^2-1)Q(x)\) với $Q(x)$ là đa thức thương.
Thay $x=1$ và $x=-1$ lần lượt ta có:
\(\left\{\begin{matrix} 1+a+b=(1^2-1)Q(1)=0\\ 1-a+b=[(-1)^2-1]Q(-1)=0\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} a+b=-1\\ -a+b=-1\end{matrix}\right.\Rightarrow \left\{\begin{matrix} a=0\\ b=-1\end{matrix}\right.\)
PP 2 xin đợi bạn khác giải quyết :)
Bài 3:
Ta có: \(\frac{\sqrt{12}-\sqrt{27}-\sqrt{48}}{1-\sqrt{5}+9\sqrt{9-4\sqrt{5}}}=\frac{\sqrt{12}-\sqrt{27}-\sqrt{48}}{1-\sqrt{5}+9\sqrt{5+4-4\sqrt{5}}}\)
\(=\frac{\sqrt{12}-\sqrt{27}-\sqrt{48}}{1-\sqrt{5}+9\sqrt{(2-\sqrt{5})^2}}=\frac{\sqrt{12}-\sqrt{27}-\sqrt{48}}{1-\sqrt{5}+9(\sqrt{5}-2)}=\frac{\sqrt{3}(2-3-4)}{-17+8\sqrt{5}}=\frac{-5\sqrt{3}}{-17+8\sqrt{5}}\)
\(=\frac{5\sqrt{3}}{17-8\sqrt{5}}\)
Bài 1:
a) ĐKXĐ: \(\left\{\begin{matrix} 1-4x^2\neq 0\\ \frac{4x^2-x^4}{1-4x^2}+1\neq 0\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x\neq \frac{\pm 1}{2}\\ \frac{1-x^4}{1-4x^2}\neq 0\end{matrix}\right.\Rightarrow \left\{\begin{matrix} x\neq \frac{\pm 1}{2}\\ x\neq \pm 1\end{matrix}\right.\)
Rút gọn:
\(A=\left(\frac{4x-x^3}{1-4x^2}-x\right):\left(\frac{4x^2-x^4}{1-4x^2}+1\right)\)
\(=\frac{4x-x^3-x+4x^3}{1-4x^2}:\frac{1-x^4}{1-4x^2}=\frac{3x+3x^3}{1-4x^2}.\frac{1-4x^2}{1-x^4}\)
\(=\frac{3x(x^2+1)}{1-x^4}=\frac{3x(x^2+1)}{(x^2+1)(1-x^2)}=\frac{3x}{1-x^2}\)
b)
\(A=\frac{3x}{1-x^2}>0\Leftrightarrow \left[\begin{matrix} 3x>0, 1-x^2>0\\ 3x<0, 1-x^2< 0\end{matrix}\right.\)
\(\Leftrightarrow \left[\begin{matrix} x>0; -1< x< 1\\ x< 0;\text{x>1 or x< -1}\end{matrix}\right.\)
\(\Leftrightarrow \left[\begin{matrix} 0< x< 1\\ x< -1\end{matrix}\right.\)
\(A=\frac{3x}{1-x^2}< 0\Leftrightarrow \left[\begin{matrix} 3x>0; 1-x^2< 0\\ 3x< 0; 1-x^2>0\end{matrix}\right.\)
\(\Leftrightarrow \left[\begin{matrix} x>0; \text{x>1 or x< -1}\\ x< 0; -1< x< 1\end{matrix}\right.\)
\(\Leftrightarrow \left[\begin{matrix} x>1\\ -1< x< 0\end{matrix}\right.\)
cho : S = 1/2^2 + 1/3^2 + 1/4^2 + 1/5^2 +......+ 1/9^2 chứng minh rằng 2/5 < S < 8 / 9
Ta có S=1/2^2+1/3^2+1/4^2+...+1/9^2
<1/2²+1/2*3+1/3*4+....+1/8*9
=1/2²+1/2-1/3+1/3-1/4+....+1/8-1/9
=1/4+1/2-1/9=23/36<32/36=8/9 (♪)
Ta lại có S=1/2^2+1/3^2+1/4^2+...+1/9^2
>1/2²+1/3*4+1/4*5+....+1/9*10
=1/2²+1/3-1/4+1/4-1/5+........+1/9-1/10
=1/2²+1/3-1/10
=19/20>8/20=2/5 ( ♫)
Từ (♪)( ♫) cho ta đpcm
Tính toán
1) S = 1+2+3+4+...+n
2) S = 1*2*3...*n
3)S = 2+4+6+...+n
4)S = 1+3+5+...+n
5)S = 2*4*6...*n
6)S = 1-2+3-4+...+n
7)S = -1+2-3+4+...+n
8)S = 1+4+9+16+...+n*n
9)S = 1+9+25+...+( n mod 2 = 1)^2
10)S =4+16+...+( n mod 2 = 0)^2
11)S =5+10+15+...+ n mod 5 =0
12)S = 1+2-3+4+5-6+7+8-9...+n-(n mod 3 = 0 )
13)S = 1+2!+3!+4!...+n!
14)S =1+(1+2)+(1+2+3)+...+( tổng các số từ 1 tới )( i chạy từ 1 tới n)
15)S =1*2+2*3+4*5+...+(n-1)*n
HELP ME!
cho s =1/22+1/3^2+1/4^2+...........+1/9^2. cmr:2/5 < s < 8/9
Lời giải:
$S=\frac{1}{2^2}+\frac{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}$
$> \frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+....+\frac{1}{9.10}$
$=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}$
$=\frac{1}{2}-\frac{1}{10}=\frac{2}{5}(*)$
Lại có:
$S=\frac{1}{2^2}+\frac{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}$
$< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{8.9}$
$=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}=1-\frac{1}{9}=\frac{8}{9}(**)$
Từ $(*); (**)$ ta có đpcm.
phân tích đa thức thành nhân tử
1)ab(a+b)-2bc(b-2c)-2ca(a-2c)-4abc
2)a^2b+2ab^2+4b^2c+4bc^2+2c^2a+ca^2+4abc
3)(x^2-6x+5)(x^2-10x+21)-20
4)4(x^2+x+1)^2+5x(x^2+x+1)+x^2
5)x^4+5x^3-12x^2+5x+1
6)(x+1)(x-4)(x+2)(x-8)+4x^2
7)4x^3+5x^2+10x-12
8)(x+3)^2(3x+8)(3x+10)-8
9)(4x+1)(12x-1)(3x+2)(x+1)-4
Cho tong S = 1/2^2 + 1/3^2 +1/4^2 +.....+ 1/9^2
CMR : 2/5 < S <8/9
Bài 1 :
a) Cho : S = 1 + 2 + 2^2 + 2^ 3 +... + 2^ 9
So sánh S với 5 * 2 ^8
b) Cho M = 1+2 + 2^2 +2^3 + 2^4
N = 2^5-1
So sánh M và N
a)S=1+2+2^2+2^3+...+2^9
2S=2+2^2+2^3+...+2^10
2S-S=(2+2^2+2^3+2^4+...+2^10)-(1+2+2^2+2^3+...+2^9)
S=2^10-1
S=1024-1
S=1023
Ta có:5.2^8=5.256=1280
Mà 1280>1023
=>S<5.2^8
b)Ta có:M=1+2+2^2+2^3+2^4
=>2M=2+2^2+2^3+2^4+2^5
=>2M-M=(2+2^2+2^3+2^4+2^5)-(1+2+2^2+2^3+2^4)
=>M=2^5-1
Mà N=2^5-1
=>M=N
Không biết có bị sai lỗi nào hay không,nhớ kiểm tra đó
Cho S = 1/2^2 + 1/3^2 + 1/4^2 +...+ 1/9^2
chứng minh rằng 2/5 < S < 8/9